Nelson Barr ultra-light DM

Wolfram Ratzinger

with

Michel Dine, Inbar Savoray and Gilad Perez

arXiv: 2405.06744

DPF-Pheno 2024

The strong CP-Problem

SM admits two CP-violating operators:

Phase of CKM matrixStrong CP phase $\theta_{CKM} = \arg(\det(y_u y_u^{\dagger}, y_d y_d^{\dagger}))$ $\overline{\theta} = \theta_{G\tilde{G}} + \arg(\det(y_u y_d))$ Observed value: O(1) $\overline{\theta} \lesssim 10^{-10}$ (neutron EDM)

The Nelson Barr solution

- Start from $\theta_{CKM} = \overline{\theta} = 0$ (CP is UV symmetry)
- New physics breaks CP $\theta_{CKM} = O(1)$ while additional symmetries ensure $\overline{\theta} = 0$ at tree-level

• As a consequence $\theta_{CKM} \rightarrow \theta_{CKM} + \frac{\phi}{f}$ is dynamical field

A minimal Model Bento, Branca, Parada '91

• Introduce:

-complex scalar, gauge singlet Φ

-vector like fermion, same charges as RH up-quark q

$$\mathcal{L} \supset \mu \bar{q}q + (g_i \Phi + \tilde{g}_i \Phi^*) \bar{u}_i q + y^u_{ij} \tilde{H} Q_i \bar{u}_j + y^d_{ij} H Q_i \bar{d}_j + \dots$$

• All couplings are real, but CP breaking from

$$\Phi = \frac{f}{\sqrt{2}} \exp(i\phi/f) \ , \quad <\phi > \neq 0$$

1) Avoids strong CP violation

$$\mathcal{M}_{u} = \begin{pmatrix} \mu & B \\ 0 & m_{u} \end{pmatrix}, \quad m_{u} = y^{u}v, \ B_{i} = (g_{i}\Phi + \tilde{g}_{i}\Phi^{*}) \Rightarrow \det(\mathcal{M}_{u}) = \mu \det(m_{u}) \in \mathbb{R}$$

0 caused by absence of ${\cal L}\supset ilde{H}Qar{q}$, ensured by ${\mathbb Z}_2; \; \Phi,q,\overline{q}$ odd

A minimal Model Bento, Branca, Parada '91

• Introduce:

-complex scalar, gauge singlet Φ

-vector like fermion, same charges as RH up-quark q

$$\mathcal{L} \supset \mu \bar{q}q + (g_i \Phi + \tilde{g}_i \Phi^*) \bar{u}_i q + y^u_{ij} \tilde{H} Q_i \bar{u}_j + y^d_{ij} H Q_i \bar{d}_j + \dots$$

• All couplings are real, but CP breaking from

$$\Phi = \frac{f}{\sqrt{2}} \exp(i\phi/f) \ , \quad <\phi > \neq 0$$

2) Generates CKM phase, after integrating out q

$$(\tilde{m}_u \tilde{m}_u^{\dagger})_{ij} = \left((m_u m_u^T)_{ij} - \frac{(m_u)_{ik} B_k^{\dagger} B_\ell(m_u^T)_{\ell j}}{\mu^2 + |B|^2} \right)$$

If $g_i \not\parallel \tilde{g}_i, \ \mu \lesssim |B|, \ \phi/f \sim 1$ one finds $\theta_{CKM} = \mathcal{O}(1)$

Nelson Barr, axion-like pheno

 $\mathcal{L} \supset \mu \bar{q}q + (g_i \Phi + \tilde{g}_i \Phi^*) \bar{u}_i q + y^u_{ij} \tilde{H} Q_i \bar{u}_j + y^d_{ij} H Q_i \bar{d}_j + \dots$

- Assume approximate flavor symmetry such that $g \propto (1,0,0), \; ilde{g} \propto (0,1,0)$
- Then ϕ is a pseudo Nambu-Goldstone boson Tree-level couplings:

-CKM phase $\theta_{CKM} \sim \phi/f$ -mixing angles $|V_{u/c,D}| \supset \cos(\phi/f)$ Requires phase and 1,2 rotation to diagonalize $\tilde{m}_u \tilde{m}_u^{\dagger} = m_u \begin{bmatrix} 1 + r \begin{pmatrix} 1 & \exp(i\phi/f) & 0 \\ \exp(-i\phi/f) & 1 & 0 \\ 0 & 0 & 0 \end{pmatrix} \end{bmatrix} m_u^T$

If ϕ displaced from minimum of potential

 ϕ is DM + CKM elements oscillate!

Oscillating CKM elements

- How large is the effect? Best observables $\propto \frac{\phi}{f} = \frac{\sqrt{\rho_{DM}}}{m_{\phi}f} \cos(m_{\phi}t) \approx 10^{-5} \times \frac{10^{14} \text{ GeV}}{f} \times \frac{10^{-21} \text{ eV}}{m_{\phi}} \cos(m_{\phi}t)$
- Prime Candidates for luminosity frontier search:

$$\frac{\delta V_{us}}{V_{us}} \Rightarrow \text{oscillating Kaon decay lifetime}$$
$$\frac{\delta \theta_{\text{KM}}}{\theta_{\text{KM}}} \Rightarrow \text{oscillating CP violation}$$
$$\frac{\delta V_{ub}}{V_{ub}} \Rightarrow \text{oscillating semi inclusive } b \text{->} u \text{ decay}$$

Oscillating CKM elements

Further signatures

• At 1 loop, coupling to quark masses

$$\frac{\Delta m_u}{m_u} \approx -\frac{3}{32\pi^2} |V_{us}^{SM}|^2 \tilde{y}_s^2 \log\left(\frac{\Lambda_{\rm UV}}{M_W}\right) \frac{\phi}{f}$$

- Equivalence principle bound $f \gtrsim 10^{14} \,\mathrm{GeV}$
- Search with nuclear clock
- At 2 loop, correction to potential + mass of ϕ

$$\Delta m_{\phi} \simeq \frac{3}{16\pi^2} |V_{cb}|^2 y_c y_b \frac{v \Lambda_{\rm UV}}{f}$$

Further signatures

Thanks!