CMS results for searches for SUSY in compressed mass scenarios

Alice Bean – University of Kansas For the CMS Collaboration DPF – May 2024

Compressed Supersymmetry KU

Search for evidence of SUSY at the electroweak scale well motivated - could be dark matter candidates

- lowest lying states in electroweakino sector $(\tilde{\chi}_1^0, \tilde{\chi}_1^{\pm}, \tilde{\chi}_2^0)$ could be nearly mass-degenerate
- slepton production could affect muon g-2
- Look for Electroweakinos, sleptons, stops such as

Compressed spectra need to be fully probed:

difference between parent sparticle and lightest stable particle

 $m_{\widetilde{P}} - m_{\widetilde{\chi}} = (\Delta m) \sim \text{small}$

CMS Results discussed here KU

- All from Run II with Integrated Luminosity 137-138fb⁻¹
- Pair produced R-parity conserving sparticles
- Simplified model constraints

1. Search for top squark production in fully hadronic final states in proton-proton collisions at \sqrt{s} = 13 TeV

• Phys. Rev. D 104, 052001 (2021)

2. Combined search for electroweak production of winos, binos, higgsinos, and sleptons in proton-proton collisions at \sqrt{s} = 13 TeV

- https://arxiv.org/pdf/2402.01888

- 3. New analysis using Recursive Jigsaw Kinematic Reconstruction
 - Spoiler alert: New limits aren't yet CMS approved for presentation so just presenting method here

Compressed Search strategies

- Identify events with initial state radiation (ISR) recoiling off sparticles
 - results in greater missing tranverse energy p_T^{miss}
 - Analyses 1&2 require high p_T jet recoil
 - Analysis 3 uses Recursive Jigsaw Reconstruction (RJR) to assign different objects to different frames

- Require low momentum objects such as leptons, b-jets, or soft secondary b-vertices

Analysis 1: Stop search

5

- ISR p_T^{ISR} > 300 GeV, p_T^{miss} > 250 GeV
- No top, W or resolved W tagged objects
- b jets or secondary vertices present with transverse mass cut

Analysis 2: Electroweakinos and KU Sleptons

6

- jet from ISR, high p_T^{miss}
- need at least 2 leptons (muons/electrons), look at charge, flavor combinations, with and without requiring mass consistent with Z Require at least one pair of opposite-sign, low-transverse momentum (p_T) electrons or muons together

RJR reconstruction KU

Kinematically group objects using approximate decay tree rest frames to measure mass sensitive variables

Visible Objects used:

electrons, muons, jets, b-tagged jets, b-tagged secondary vertices

KU

Analysis 3 strategy

- Use 0, 1, 2, 3 lepton events and group according to how many other jets, b-jets, or b SVs are present
- New deep neural network b-SV finder helps lower p_T threshold to probe tighter compression range $2 \le p_T \le 20$ GeV/c
- Create 2-dimensional bins with mass sensitive variables R_{ISR} and M_{\perp}

 Use data driven fit with many control regions to constrain backgrounds

Conclusion

CMS has searched for signatures from simplified SUSY models in compressed mass region Δm region (GeV) sparticle mass limit (GeV)

stops10-80 $m_{\tilde{t}} > 600-700$ electroweakinos,3-50 $m_{\chi_1^{\pm}} = m_{\chi_2^{0}} > 200-300$ sleptons3-20 $m_{\tilde{\tau}} > 100-200$

Stay tuned for latest results from the kinematic reconstruction analysis which we think will improve these exclusions