A New Probe of Relic Neutrino Clustering using Decaying Heavy Dark Matter

Writasree Maitra m.writasree@wustl.edu

with Vedran Brdar, Bhupal Dev and Anna M. Suliga

DPF-PHENO 2024 May 16, 2024

Writasree Maitra

Probing $C\nu B$ with DM decay

• At around one second after big bang, neutrinos got decoupled from other particles.

- At around one second after big bang, neutrinos got decoupled from other particles.
- Detection of C*\nu*B will validate modern cosmological theory.

- At around one second after big bang, neutrinos got decoupled from other particles.
- Detection of C*\nu*B will validate modern cosmological theory.
- It will provide a window to the first second of creation of the universe.

• C ν B inherently connected to CMB: $T_{\nu,0} = \left(\frac{4}{11}\right)^{1/3} T_{\gamma,0} = 1.945 K = 1.7 \times 10^{-4} eV$

- C ν B inherently connected to CMB: $T_{\nu,0} = \left(\frac{4}{11}\right)^{1/3} T_{\gamma,0} = 1.945 K = 1.7 \times 10^{-4} eV$
- Essentially a fermion gas obeying Fermi-Dirac statistics.

- C ν B inherently connected to CMB: $T_{\nu,0} = \left(\frac{4}{11}\right)^{1/3} T_{\gamma,0} = 1.945 K = 1.7 \times 10^{-4} eV$
- Essentially a fermion gas obeying Fermi-Dirac statistics.
- Number density: $n_{\nu,0} = \frac{3}{4} \frac{\zeta(3)}{\pi^2} g T_{\nu,0}^3 = 56 \text{cm}^{-3}$ per flavor (and similarly for $\bar{\nu}$).

- C ν B inherently connected to CMB: $T_{\nu,0} = \left(\frac{4}{11}\right)^{1/3} T_{\gamma,0} = 1.945K = 1.7 \times 10^{-4} eV$
- Essentially a fermion gas obeying Fermi-Dirac statistics.
- Number density: $n_{\nu,0} = \frac{3}{4} \frac{\zeta(3)}{\pi^2} g T_{\nu,0}^3 = 56 \text{cm}^{-3}$ per flavor (and similarly for $\bar{\nu}$).
- Neutrinos start clustering when they become non-relativistic.

- C ν B inherently connected to CMB: $T_{\nu,0} = \left(\frac{4}{11}\right)^{1/3} T_{\gamma,0} = 1.945K = 1.7 \times 10^{-4} eV$
- Essentially a fermion gas obeying Fermi-Dirac statistics.
- Number density: $n_{\nu,0} = \frac{3}{4} \frac{\zeta(3)}{\pi^2} g T^3_{\nu,0} = 56 \text{cm}^{-3}$ per flavor (and similarly for $\bar{\nu}$).
- Neutrinos start clustering when they become non-relativistic. Relic neutrino density gets enhanced.

$$n_{\nu} = \xi n_{\nu,0} (1+z)^3$$

 ξ is relic neutrino overdensity.

- C ν B inherently connected to CMB: $T_{\nu,0} = \left(\frac{4}{11}\right)^{1/3} T_{\gamma,0} = 1.945K = 1.7 \times 10^{-4} eV$
- Essentially a fermion gas obeying Fermi-Dirac statistics.
- Number density: $n_{\nu,0} = \frac{3}{4} \frac{\zeta(3)}{\pi^2} g T^3_{\nu,0} = 56 \text{cm}^{-3}$ per flavor (and similarly for $\bar{\nu}$).
- Neutrinos start clustering when they become non-relativistic. Relic neutrino density gets enhanced.

$$n_{\nu} = \xi n_{\nu,0} (1+z)^3$$

 ξ is relic neutrino overdensity.

• The current strongest experimental constraint on the local neutrino overdensity from the KATRIN experiment is $\xi < 1.1 \times 10^{11} (95\% \text{ CL})$.

• Direct detection experiments: KATRIN, PTOLEMY

• KE of $C\nu B$ is very low \rightarrow direct detection is extremely difficult.

- KE of $C\nu B$ is very low \rightarrow direct detection is extremely difficult.
- Cosmic rays $C\nu B$ scattering

- KE of $C\nu B$ is very low \rightarrow direct detection is extremely difficult.
- Cosmic rays $C\nu B$ scattering

[T. Weiler (PRL '82)]

- KE of $C\nu B$ is very low \rightarrow direct detection is extremely difficult.
- Cosmic rays $C\nu B$ scattering

[T. Weiler (PRL '82)]

Resonant absorption happens at $\frac{m_Z^2}{2m_\nu} \approx (4.2 \times 10^{22} eV) \frac{0.1 eV}{m_\nu}$

- KE of $C\nu B$ is very low \rightarrow direct detection is extremely difficult.
- Cosmic rays $C\nu B$ scattering

[T. Weiler (PRL '82)]

Resonant absorption happens at $\frac{m_Z^2}{2m_\nu} \approx (4.2 \times 10^{22} eV) \frac{0.1 eV}{m_\nu} \rightarrow \text{Be-yond GZK cut-off}$

- KE of $C\nu B$ is very low \rightarrow direct detection is extremely difficult.
- Cosmic rays $C\nu B$ scattering

[T. Weiler (PRL '82)]

[Eberle et al. (PRD '04)]

Writasree Maitra

- KE of $C\nu B$ is very low \rightarrow direct detection is extremely difficult.
- Cosmic rays $C\nu B$ scattering

[T. Weiler (PRL '82)]

Difficulty:- Dependent on redshift and source energy distribution of the unknown cosmic ray sources.

[Eberle et al. (PRD '04)]

Writasree Maitra

For $\nu\bar{\nu}$ annihilation, weak current is either vector or axial-vector type. Weak vector current $\rightarrow J^{PC} = 1^{--}$ resonances and weak axial-vector current $\rightarrow J^{PC} = 1^{++}$ resonances.

For $\nu\bar{\nu}$ annihilation, weak current is either vector or axial-vector type. Weak vector current $\rightarrow J^{PC} = 1^{--}$ resonances and weak axial-vector current $\rightarrow J^{PC} = 1^{++}$ resonances.

[Dev, Soni (2112.01424)]

[Brdar, Dev, Plestid, Soni (PLB '22)]

[Brdar, Dev, Plestid, Soni (PLB '22)]

$$E_{res} = \frac{m_{\rho}^2}{2m_{\nu}(1+z)} \approx \frac{3 \times 10^{18} eV}{1+z} \frac{0.1 eV}{m_{\nu}}$$

[Brdar, Dev, Plestid, Soni (PLB '22)]

[Brdar, Dev, Plestid, Soni (PLB '22)]

Writasree Maitra

$$E_{res} = \frac{m_{\rho}^2}{2m_{\nu}(1+z)} \approx \frac{3 \times 10^{18} eV}{1+z} \frac{0.1 eV}{m_{\nu}}$$

[Brdar, Dev, Plestid, Soni (PLB '22)]

The cosmogenic neutrino flux typically peaks around $10^{18} eV$

[Brdar, Dev, Plestid, Soni (PLB '22)]

For $\nu\bar{\nu}$ annihilation, weak current is either vector or axial-vector type. Weak vector current $\rightarrow J^{PC} = 1^{--}$ resonances and axial-vector current $\rightarrow J^{PC} = 1^{++}$ resonances.

[Dev, Soni (2112.01424)]

For $\nu\bar{\nu}$ annihilation, weak current is either vector or axial-vector type. Weak vector current $\rightarrow J^{PC} = 1^{--}$ resonances and axial-vector current $\rightarrow J^{PC} = 1^{++}$ resonances.

[Dev, Soni (2112.01424)]

• For the rest meson resonances, either resonance energy is beyond $10^{18} eV$ or the resonances have narrow width.

[2110.02821]

[2110.02821]

 $DM \to \nu_{\alpha} \bar{\nu}_{\alpha}$ $(10^9 GeV \le m_{DM} \le 10^{15} GeV)$

[2110.02821]

 $DM \rightarrow \nu_{\alpha} \bar{\nu}_{\alpha}$

 $(10^9 GeV \le m_{DM} \le 10^{15} GeV)$

Constraint on DM lifetime

[Das,Murase, Fujii (PRD '23)]

Constraint on DM lifetime

[Das,Murase, Fujii (PRD '23)]

We have considered-

- $p \bar{p}$ (DM + astrophysical) constraint \rightarrow weaker constarint on τ_{DM}
- γ ray (Galactic DM) constraint \rightarrow stronger constarint on τ_{DM}

Number of unattenuated events,

$$N_{wo} = \int_{E_{min}}^{E_{max}} dE_{\nu} \ T \ \Omega \ A_{eff}(E_{\nu}) \ \frac{d\Phi}{dE_{\nu}}(E_{\nu}, m_{DM}, \tau_{DM})$$

Number of unattenuated events,

$$N_{wo} = \int_{E_{min}}^{E_{max}} dE_{\nu} \ T \ \Omega \ A_{eff}(E_{\nu}) \ \frac{d\Phi}{dE_{\nu}}(E_{\nu}, m_{DM}, \tau_{DM})$$

Number of attenuated events,

$$N_{w} = \int_{E_{min}}^{E_{max}} dE_{\nu} \ T \ \Omega \ A_{eff}(E_{\nu}) \ \frac{d\Phi}{dE_{\nu}}(E_{\nu}, m_{DM}, \tau_{DM}) \ R(E_{\nu}, m_{1}, \xi, z)$$

Number of unattenuated events,

$$N_{wo} = \int_{E_{min}}^{E_{max}} dE_{\nu} \ T \ \Omega \ A_{eff}(E_{\nu}) \ \frac{d\Phi}{dE_{\nu}}(E_{\nu}, m_{DM}, \tau_{DM})$$

Number of attenuated events,

$$N_{w} = \int_{E_{min}}^{E_{max}} dE_{\nu} \ T \ \Omega \ A_{eff}(E_{\nu}) \ \frac{d\Phi}{dE_{\nu}}(E_{\nu}, m_{DM}, \tau_{DM}) \ R(E_{\nu}, m_{1}, \xi, z)$$

$$R(E_{\nu}, m_1, \xi, z) = e^{-L(\xi)\sigma(E_{\nu}, m_1)n_{\nu}(z,\xi)}$$

11/23

Stronger constraint on DM lifetime

Writasree Maitra

Probing $C\nu B$ with DM decay

Weaker constraint on DM lifetime

Writasree Maitra

Probing $C\nu B$ with DM decay

$$N_{w/wo} = \int_{E_{min}}^{E_{max}} dE_{\nu} \ T \ \Omega \ A_{eff}(E_{\nu}) \ \frac{d\Phi}{dE_{\nu}}(E_{\nu}, m_{DM}, \tau_{DM}) \ R(E_{\nu}, m_{1}, \xi, z)$$

For $N_w, R(E_{\nu}, m_1, \xi, z) = e^{-L(\xi)\sigma(E_{\nu}, m_1)n_{\nu}(z, \xi)}$

For N_{wo} , $R(E_{\nu}, m_1, \xi, z) = 1$.

$$N_{w/wo} = \int_{E_{min}}^{E_{max}} dE_{\nu} \ T \ \Omega \ A_{eff}(E_{\nu}) \ \frac{d\Phi}{dE_{\nu}}(E_{\nu}, m_{DM}, \tau_{DM}) \ R(E_{\nu}, m_{1}, \xi, z)$$

For $N_w, R(E_{\nu}, m_1, \xi, z) = e^{-L(\xi)\sigma(E_{\nu}, m_1)n_{\nu}(z, \xi)}$

For N_{wo} , $R(E_{\nu}, m_1, \xi, z) = 1$.

$$\chi^2 = 2\left(N_w - N_{wo} + N_{wo}log\frac{N_{wo}}{N_w}\right)$$

$$N_{w/wo} = \int_{E_{min}}^{E_{max}} dE_{\nu} \ T \ \Omega \ A_{eff}(E_{\nu}) \ \frac{d\Phi}{dE_{\nu}}(E_{\nu}, m_{DM}, \tau_{DM}) \ R(E_{\nu}, m_{1}, \xi, z)$$

For N_w , $R(E_\nu, m_1, \xi, z) = e^{-L(\xi)\sigma(E_\nu, m_1)n_\nu(z,\xi)}$

For N_{wo} , $R(E_{\nu}, m_1, \xi, z) = 1$.

$$\chi^2 = 2\left(N_w - N_{wo} + N_{wo} log \frac{N_{wo}}{N_w}\right)$$

For IceCube-Gen2 to detect these events at 90% CL-

$$\chi^2 \ge 2.7$$

$$N_{w/wo} = \int_{E_{min}}^{E_{max}} dE_{\nu} \ T \ \Omega \ A_{eff}(E_{\nu}) \ \frac{d\Phi}{dE_{\nu}}(E_{\nu}, m_{DM}, \tau_{DM}) \ R(E_{\nu}, m_{1}, \xi, z)$$

For N_w , $R(E_\nu, m_1, \xi, z) = e^{-L(\xi)\sigma(E_\nu, m_1)n_\nu(z,\xi)}$

For N_{wo} , $R(E_{\nu}, m_1, \xi, z) = 1$.

$$\chi^2 = 2\left(N_w - N_{wo} + N_{wo} log \frac{N_{wo}}{N_w}\right)$$

For IceCube-Gen2 to detect these events at 90% CL-

$$\chi^2 \ge 2.7$$

$$\chi^2(m_1, m_{DM}, \tau_{DM}, z, \xi) \ge 2.7$$

Stronger constraint on DM lifetime

Stronger constraint on DM lifetime

Weaker constraint on DM lifetime

Writasree Maitra

Probing $C\nu B$ with DM decay

Summary

- The existence of relic neutrino background is a strong prediction of big bang cosmology.
- Its direct detection is difficult because of its low kinetic energy.
- Its indirect detection via cosmic ray-C ν B scattering is limited to inclusion of only ρ meson resonance.
- Heavy dark matter decaying into neutrinos can be resonant scattered by relic neutrinos and this can be a new probe of detecting relic neutrino.

Summary

- The existence of relic neutrino background is a strong prediction of big bang cosmology.
- Its direct detection is difficult because of its low kinetic energy.
- Its indirect detection via cosmic ray-C ν B scattering is limited to inclusion of only ρ meson resonance.
- Heavy dark matter decaying into neutrinos can be resonant scattered by relic neutrinos and this can be a new probe of detecting relic neutrino.

Thank you :)

Backup Slides

Backup Slides

Backup Slides

Backup slides

Figure: When the stronger DM lifetime-constraint is considered.

Figure: When the weaker DM lifetime-constraint is considered.

Writasree Maitra

Probing $C\nu B$ with DM decay

Backup slides

Backup slides

(left) ρ meson & (right) Z meson.

Writasree Maitra