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Relic Neutrinos

• At around one second after big
bang, neutrinos got decoupled
from other particles.

• Detection of CνB will validate
modern cosmological theory.

• It will provide a window to
the first second of creation of
the universe.
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Characteristics of relic neutrinos

• CνB inherently connected to CMB:
Tν,0 =

( 4
11

)1/3
Tγ,0 = 1.945K = 1.7 × 10−4eV

• Essentially a fermion gas obeying Fermi-Dirac statistics.
• Number density: nν,0 = 3

4
ζ(3)
π2 gT 3

ν,0 = 56cm−3 per flavor (and similarly for
ν̄).

• Neutrinos start clustering when they become non-relativistic. Relic
neutrino density gets enhanced.

nν = ξnν,0(1 + z)3

ξ is relic neutrino overdensity.
• The current strongest experimental constraint on the local neutrino

overdensity from the KATRIN experiment is ξ < 1.1 × 1011 (95% CL).
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Existing probes and their difficulties

• Direct detection experiments: KATRIN, PTOLEMY
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Existing probes and their difficulties
• KE of CνB is very low → direct detection is extremely difficult.

• Cosmic rays - CνB scattering

[T. Weiler (PRL ’82)]

Resonant absorption happens at
m2

Z

2mν
≈ (4.2 × 1022eV ) 0.1eV

mν
→ Be-

yond GZK cut-off

[Eberle et al. (PRD ’04)]

Difficulty:- Dependent on redshift
and source energy distribution of
the unknown cosmic ray sources.
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Using other SM meson resonances

For νν̄ annihilation, weak current is either vector or axial-vector type. Weak
vector current → JP C = 1−− resonances and weak axial-vector current →
JP C = 1++ resonances.

[Dev, Soni (2112.01424)]
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Using other SM meson resonances

[Brdar, Dev, Plestid, Soni (PLB ’22)]

Eres = m2
ρ

2mν (1+z) ≈ 3×1018eV
1+z

0.1eV
mν

[Brdar, Dev, Plestid, Soni (PLB ’22)]

The cosmogenic neutrino flux typi-
cally peaks around 1018eV
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Using other SM meson resonances
For νν̄ annihilation, weak current is either vector or axial-vector type. Weak
vector current → JP C = 1−− resonances and axial-vector current →
JP C = 1++ resonances.

[Dev, Soni (2112.01424)]

• For the rest meson resonances, either resonance energy is beyond 1018eV
or the resonances have narrow width.
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Motivation of our work

[2110.02821]

DM → ναν̄α (109GeV ≤ mDM ≤ 1015GeV )

HDMSpectra
[Bauer, Rodd, Webber (JHEP ’21)]
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Constraint on DM lifetime

[Das,Murase, Fujii (PRD ’23)]

We have considered-
• p − p̄ (DM + astrophysical) constraint → weaker constarint on τDM

• γ ray (Galactic DM) constraint → stronger constarint on τDM
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Result

Number of unattenuated events,

Nwo =
∫ Emax

Emin

dEν T Ω Aeff (Eν) dΦ
dEν

(Eν , mDM , τDM )

Number of attenuated events,

Nw =
∫ Emax

Emin

dEν T Ω Aeff (Eν) dΦ
dEν

(Eν , mDM , τDM ) R(Eν , m1, ξ, z)

R(Eν , m1, ξ, z) = e−L(ξ)σ(Eν ,m1)nν (z,ξ)
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Result

Stronger constraint on DM lifetime
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Result

Weaker constraint on DM lifetime
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Result

Nw/wo =
∫ Emax

Emin

dEν T Ω Aeff (Eν) dΦ
dEν

(Eν , mDM , τDM ) R(Eν , m1, ξ, z)

For Nw, R(Eν , m1, ξ, z) = e−L(ξ)σ(Eν ,m1)nν (z,ξ)

For Nwo, R(Eν , m1, ξ, z) = 1.

χ2 = 2
(

Nw − Nwo + Nwolog
Nwo

Nw

)
For IceCube-Gen2 to detect these events at 90% CL-

χ2 ≥ 2.7

χ2(m1, mDM , τDM , z, ξ) ≥ 2.7
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Summary

• The existence of relic neutrino background is a strong prediction of big
bang cosmology.

• Its direct detection is difficult because of its low kinetic energy.

• Its indirect detection via cosmic ray-CνB scattering is limited to inclusion
of only ρ meson resonance.

• Heavy dark matter decaying into neutrinos can be resonant scattered by
relic neutrinos and this can be a new probe of detecting relic neutrino.

Thank you :)
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Backup slides

Figure: When the stronger DM lifetime-constraint is considered.

Figure: When the weaker DM lifetime-constraint is considered.
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Backup slides

(left) ρ meson & (right) Z meson.
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