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I. Scientific Question: If gravity can be quantized, then how can we derive effective quantum corrections for a Black Hole, while 

maintaining General Covariance.

II. Importance: Unlike standard EFT our formulation is sensitive to potentially new phenomenology by not assuming they are of 

higher curvature form.

III. Unique and New: We systematically derive quantum effects in canonical gravity, capturing quantum fluctuations using a 

Scalar Field modification to the Hamiltonian.

IV. Implications:Our analysis reveals features of underlying non-local quantum effects and shows that the quasiclassical methods 

we used are promising for future applications to inhomogeneous models of quantum gravity.
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● General Relativity (GR) vs. Special Relativity (SR):

● SR: the Minkowski metric defines the geometry of space-time and is a fixed 
structure.

● GR: the metric is not a fixed structure but a dynamical entity that evolves 
according to the Einstein Field Equations.

● Dynamical nature of spacetime geometry:
● Geometry in GR cannot be prescribed a priori.
● influenced by the gravitational field, which interacts with all forms of 

energy.
● General Covariance:

● The lack of fixed background geometry in GR is what Einstein referred to as 
general covariance.
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For the Static cAse we get the Schwarzschild line element:

Partial Gauge Fixing in a static configuration
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Quantum-Corrected Space-Time Geometry

For Asymptotically Constant U(x)Schwarzschild Plus Small Corrections 

In a QM settings U(x) can be interpreted as Classical Remnant of Zero-Point Fluctuations.



      Thank You For Your Attention!
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