Higher-order corrections for $t\bar{t}W$ production

Nikolaos Kidonakis

in collaboration with Chris Foster

- Higher-order soft-gluon corrections
- $t\bar{t}W^+$ and $t\bar{t}W^-$ cross sections
- Top-quark p_T and rapidity distributions

$t\bar{t}W$ production

observation of $t\bar{t}W$ events at 7, 8, 13 TeV collisions at the LHC

measurements are significantly higher than theoretical predictions

QCD corrections at NLO are large, $\sim 47\%$ at 13.6 TeV

electroweak corrections are smaller but significant

the QCD corrections are dominated by soft-gluon emission

further improvement in theoretical accuracy by the inclusion of higher-order soft-gluon corrections

 \rightarrow approximate NNLO (aNNLO) and approximate N³LO (aN³LO) predictions

Soft-gluon corrections

They are important for top-quark processes and they approximate known exact results at NLO and NNLO very well

partonic processes $q(p_q) + \bar{q}'(p_{\bar{q}'}) \rightarrow t(p_t) + \bar{t}(p_{\bar{t}}) + W(p_W)$

define $s = (p_q + p_{\bar{q}'})^2$, $t = (p_q - p_t)^2$, $u = (p_{\bar{q}'} - p_t)^2$

we define the threshold variable $s_4 = (p_{\bar{t}} + p_W + p_g)^2 - (p_{\bar{t}} + p_W)^2 = s + t + u - m_t^2 - (p_{\bar{t}} + p_W)^2$ where extra gluon with p_g emitted

At partonic threshold $p_g \rightarrow 0$ and thus $s_4 \rightarrow 0$

Soft corrections $\left[\frac{\ln^k(s_4/m_t^2)}{s_4}\right]_+$ with $k \le 2n-1$ for the order α_s^n corrections

Resum these soft corrections for the double-differential cross section

Finite-order expansions \rightarrow no prescription needed or used (this avoids underestimating the size of the corrections)

Approximate NNLO (aNNLO) and approximate N^3LO (aN³LO) predictions for cross sections and differential distributions

Soft-gluon Resummation

$$d\sigma_{pp \to t\bar{t}W} = \sum_{q,\bar{q}'} \int dx_a \, dx_b \, \phi_{q/p}(x_a,\mu_F) \, \phi_{\bar{q}'/p}(x_b,\mu_F) \, d\hat{\sigma}_{q\bar{q}' \to t\bar{t}W}(s_4,\mu_F)$$

take Laplace transforms $d\tilde{\hat{\sigma}}_{q\bar{q}'\to t\bar{t}W}(N) = \int (ds_4/s) e^{-Ns_4/s} d\hat{\sigma}_{q\bar{q}'\to t\bar{t}W}(s_4)$ and $\tilde{\phi}(N) = \int_0^1 e^{-N(1-x)} \phi(x) dx$ with transform variable N

Then

$$d\tilde{\sigma}_{q\bar{q}'\to t\bar{t}W}(N) = \tilde{\phi}_{q/q}(N_q,\mu_F) \; \tilde{\phi}_{\bar{q}'/\bar{q}'}(N_{\bar{q}'},\mu_F) \; d\tilde{\hat{\sigma}}_{q\bar{q}'\to t\bar{t}W}(N,\mu_F)$$

Refactorization for the cross section

$$d\sigma_{q\bar{q}'\to t\bar{t}W}(N) = \tilde{\psi}_q(N_q,\mu_F)\,\tilde{\psi}_{\bar{q}'}(N_{\bar{q}'},\mu_F)\,\mathrm{tr}\left\{H_{q\bar{q}'\to t\bar{t}W}\,\,\tilde{S}_{q\bar{q}'\to t\bar{t}W}\left(\frac{\sqrt{s}}{N\mu_F}\right)\right\}$$

 $\psi_q, \psi_{\bar{q}'} \rightarrow \text{collinear emission from incoming partons}$ $H_{q\bar{q}' \rightarrow t\bar{t}W}$ is hard function \rightarrow short distance $S_{q\bar{q}' \rightarrow t\bar{t}W}$ is soft function \rightarrow noncollinear soft gluons Thus

$$d\tilde{\hat{\sigma}}_{q\bar{q}'\to t\bar{t}W}(N) = \frac{\tilde{\psi}_{q/q}(N_q,\mu_F)\,\tilde{\psi}_{\bar{q}'/\bar{q}'}(N_{\bar{q}'},\mu_F)}{\tilde{\phi}_{q/q}(N_q,\mu_F)\,\tilde{\phi}_{\bar{q}'/\bar{q}'}(N_{\bar{q}'},\mu_F)}\,\mathrm{tr}\,\left\{H_{q\bar{q}'\to t\bar{t}W}\,\,\tilde{S}_{q\bar{q}'\to t\bar{t}W}\left(\frac{\sqrt{s}}{N\mu_F}\right)\right\}$$

$$S_{q\bar{q}'\to t\bar{t}W} \text{ satisfies the renormalization group equation} \\ \left(\mu_R \frac{\partial}{\partial \mu_R} + \beta(g_s) \frac{\partial}{\partial g_s}\right) S_{q\bar{q}'\to t\bar{t}W} = -\Gamma_{S \ q\bar{q}'\to t\bar{t}W}^{\dagger} S_{q\bar{q}'\to t\bar{t}W} - S_{q\bar{q}'\to t\bar{t}W} \Gamma_{S \ q\bar{q}'\to t\bar{t}W}$$

Soft anomalous dimension $\Gamma_{S q\bar{q}' \to t\bar{t}W}$ controls the evolution of the soft function which gives the exponentiation of logarithms of N

Renormalization group evolution \rightarrow resummation

$$\begin{split} d\tilde{\sigma}_{q\bar{q}'\to t\bar{t}W}^{\mathrm{resum}}(N) &= \exp\left[\sum_{i=q,\bar{q}'} E_i(N_i)\right] \exp\left[\sum_{i=q,\bar{q}'} 2\int_{\mu_F}^{\sqrt{s}} \frac{d\mu}{\mu} \gamma_{i/i}(N_i)\right] \\ &\times \mathrm{tr} \left\{ H_{q\bar{q}'\to t\bar{t}W}\left(\alpha_s(\sqrt{s})\right) \bar{P} \exp\left[\int_{\sqrt{s}}^{\sqrt{s}/N} \frac{d\mu}{\mu} \Gamma_S^{\dagger}_{q\bar{q}'\to t\bar{t}W}^{(\alpha_s(\mu))}\right] \right\} \\ &\quad \times \tilde{S}_{q\bar{q}'\to t\bar{t}W}\left(\alpha_s\left(\frac{\sqrt{s}}{N}\right)\right) P \exp\left[\int_{\sqrt{s}}^{\sqrt{s}/N} \frac{d\mu}{\mu} \Gamma_S_{q\bar{q}'\to t\bar{t}W}^{(\alpha_s(\mu))}\right] \right\} \end{split}$$

 $H_{q\bar{q}' \to t\bar{t}W}$ and $\tilde{S}_{q\bar{q}' \to t\bar{t}W}$ and $\Gamma_{S q\bar{q}' \to t\bar{t}W}$ are 2×2 matrices

choose color tensor basis of s-channel singlet and octet exchange $c_1^{q\bar{q}' \to t\bar{t}W} = \delta_{ab}\delta_{12}, c_2^{q\bar{q}' \to t\bar{t}W} = T_{ba}^c T_{12}^c$

The four matrix elements of $\Gamma_{S q\bar{q}' \rightarrow t\bar{t}W}$ are at one loop

$$\Gamma_{11\,q\bar{q}'\to t\bar{t}W}^{(1)} = \Gamma_{\text{cusp}}^{(1)}, \quad \Gamma_{12\,q\bar{q}'\to t\bar{t}W}^{(1)} = \frac{C_F}{2N_c} \Gamma_{21\,q\bar{q}'\to t\bar{t}W}^{(1)}, \quad \Gamma_{21\,q\bar{q}'\to t\bar{t}W}^{(1)} = \ln\left(\frac{(t-m_t^2)(t'-m_t^2)}{(u-m_t^2)(u'-m_t^2)}\right),$$

$$\Gamma_{22\,q\bar{q}'\to t\bar{t}W}^{(1)} = \left(1 - \frac{C_A}{2C_F}\right) \left[\Gamma_{\text{cusp}}^{(1)} + 2C_F \ln\left(\frac{(t-m_t^2)(t'-m_t^2)}{(u-m_t^2)(u'-m_t^2)}\right)\right] + \frac{C_A}{2} \left[\ln\left(\frac{(t-m_t^2)(t'-m_t^2)}{s\,m_t^2}\right) - 1\right]$$

where $\Gamma_{\text{cusp}}^{(1)} = -C_F \left(L_{\beta_t} + 1 \right)$ is the one-loop QCD massive cusp anomalous dimension, with $L_{\beta_t} = (1 + \beta_t^2)/(2\beta_t) \ln[(1 - \beta_t)/(1 + \beta_t)]$ and $\beta_t = \sqrt{1 - 4m_t^2/s'}$, $s' = (p_t + p_{\bar{t}})^2$, $t' = (p_{\bar{q}'} - p_{\bar{t}})^2$, $u' = (p_q - p_{\bar{t}})^2$

At two loops

 $\Gamma_{11\,q\bar{q}'\to t\bar{t}W}^{(2)} = \Gamma_{\text{cusp}}^{(2)}, \quad \Gamma_{12\,q\bar{q}'\to t\bar{t}W}^{(2)} = \left(K_2 - C_A\,N_2^{\beta_t}\right)\Gamma_{12\,q\bar{q}'\to t\bar{t}W}^{(1)}, \quad \Gamma_{21\,q\bar{q}'\to t\bar{t}W}^{(2)} = \left(K_2 + C_A\,N_2^{\beta_t}\right)\Gamma_{21\,q\bar{q}'\to t\bar{t}W}^{(1)},$ $\Gamma_{22\,q\bar{q}'\to t\bar{t}W}^{(2)} = K_2\,\Gamma_{22\,q\bar{q}'\to t\bar{t}W}^{(1)} + \left(1 - \frac{C_A}{2C_F}\right)\left(\Gamma_{\text{cusp}}^{(2)} - K_2\,\Gamma_{\text{cusp}}^{(1)}\right) + \frac{1}{4}C_A^2(1 - \zeta_3)$

where $K_2 = C_A(67/36 - \zeta_2/2) - 5n_f/18$ with n_f the number of light-quark flavors,

$$N_2^{\beta_t} = \frac{1}{4} \ln^2 \left(\frac{1-\beta_t}{1+\beta_t} \right) + \frac{(1+\beta_t^2)}{8\beta_t} \left[\zeta_2 - \ln^2 \left(\frac{1-\beta_t}{1+\beta_t} \right) - \operatorname{Li}_2 \left(\frac{4\beta_t}{(1+\beta_t)^2} \right) \right]$$

and

$$\Gamma_{\text{cusp}}^{(2)} = K_2 \Gamma_{\text{cusp}}^{(1)} + C_F C_A \left\{ \frac{1}{2} + \frac{\zeta_2}{2} + \frac{1}{2} \ln^2 \left(\frac{1 - \beta_t}{1 + \beta_t} \right) \right. \\ \left. + \frac{(1 + \beta_t^2)}{4\beta_t} \left[\zeta_2 \ln \left(\frac{1 - \beta_t}{1 + \beta_t} \right) - \ln^2 \left(\frac{1 - \beta_t}{1 + \beta_t} \right) + \frac{1}{3} \ln^3 \left(\frac{1 - \beta_t}{1 + \beta_t} \right) - \text{Li}_2 \left(\frac{4\beta_t}{(1 + \beta_t)^2} \right) \right] \right. \\ \left. + \frac{(1 + \beta_t^2)^2}{8\beta_t^2} \left[-\zeta_3 - \zeta_2 \ln \left(\frac{1 - \beta_t}{1 + \beta_t} \right) - \frac{1}{3} \ln^3 \left(\frac{1 - \beta_t}{1 + \beta_t} \right) - \ln \left(\frac{1 - \beta_t}{1 + \beta_t} \right) \text{Li}_2 \left(\frac{(1 - \beta_t)^2}{(1 + \beta_t)^2} \right) \right. \\ \left. + \text{Li}_3 \left(\frac{(1 - \beta_t)^2}{(1 + \beta_t)^2} \right) \right] \right\}$$

is the two-loop massive cusp anomalous dimension in QCD

Expansions of the resummed cross section to fixed order NNLO expansions (aNNLO) are consistent with (almost exact) NNLO results aN³LO is the state of the art

Electroweak corrections are also included

Cross sections for $t\bar{t}W$ production

large *K*-factors

improved agreement with data at $aN^{3}LO$

$t\bar{t}W$ cross sections

$tar{t}W$ cross sections (fb) in pp collisions at the LHC							
σ in fb	$7 \mathrm{TeV}$	$8 \mathrm{TeV}$	$13 \mathrm{TeV}$	$13.6 \mathrm{TeV}$	$14 \mathrm{TeV}$		
LO QCD	${}^{128}_{-28}^{+39}$	172^{+51}_{-36}	${}^{445}_{-84}^{+114}$	481^{+121}_{-90}	506^{ig+126}_{ig-94}		
lo QCD+EW	135^{+41}_{-29}	$\substack{182 + 53 \\ -38}$	467^{+119}_{-88}	$505 {+127 \atop -94}$	$531^{egin{array}{c}+132\\-98\end{array}}$		
NLO QCD	$^{164}_{-17}^{+13}$	226^{+20}_{-23}	$646 {+83 \atop -74}$	708^{+94}_{-82}	$750^{egin{array}{c}+101\-88\end{array}}$		
NLO QCD+EW	175^{+12}_{-17}	$^{239}_{-23}^{+19}$	$677^{egin{array}{c} +80 \\ -74 \end{array}}$	$741 {+90 \\ -82}$	785^{+97}_{-88}		
aNNLO QCD	179^{+6}_{-10}	$^{246}_{-15}^{+9}$	720^{+29}_{-43}	791^{+32}_{-47}	837^{+34}_{-50}		
aNNLO QCD $+$ NLO EW	190^{+6}_{-10}	259^{+9}_{-15}	$751^{egin{array}{c}+27\-43\end{array}}$	$824 {+29 \\ -47}$	872^{+31}_{-50}		
aN ³ LO QCD	185^{+5}_{-8}	253^{+7}_{-12}	748^{+24}_{-19}	822^{+26}_{-20}	870^{+28}_{-21}		
$aN^{3}LO QCD + NLO EW$	$196 {+5 \atop -8}$	266^{+7}_{-12}	779^{+22}_{-19}	$855 {+23 \atop -20}$	905^{+25}_{-21}		

At 13.6 TeV

NLO QCD corrections \rightarrow 47%

aNNLO QCD corrections \rightarrow 17%

 $aN^{3}LO \ QCD \ corrections \rightarrow 6\%$

electroweak NLO corrections \rightarrow 7%

Total aN³LO QCD+NLO EW cross section is 78% bigger than LO QCD

$t\bar{t}W^+$ and $t\bar{t}W^-$ cross sections

$tar{t}W^+$ and $tar{t}W^-$ cross sections (fb) in pp collisions at the LHC							
σ in fb	$t\bar{t}W^+$ 13 TeV	$tar{t}W^+$ 13.6 TeV	$t\bar{t}W^{-}$ 13 TeV	$tar{t}W^-$ 13.6 TeV			
LO QCD	299^{+77}_{-57}	$322 {+82 \atop -60}$	$146 {+37 \atop -28}$	$\substack{159+40\\-30}$			
lo QCD+EW	$313 {+80 \atop -59}$	$337^{egin{array}{c} +85 \\ -63 \end{array}}$	$^{154}_{-29}^{+39}$	$168\substack{+42\\-31}$			
NLO QCD	431^{+54}_{-49}	470^{+61}_{-54}	$215 {+29 \atop -25}$	$238 {+33 \atop -28}$			
NLO $QCD+EW$	450^{+51}_{-48}	490^{+58}_{-53}	$227 {+28 \atop -25}$	251^{+32}_{-28}			
aNNLO QCD	480^{+19}_{-28}	525^{+21}_{-31}	240^{+10}_{-15}	266^{+11}_{-16}			
aNNLO QCD $+$ NLO EW	499^{+17}_{-28}	$\substack{545+19\\-31}$	252^{+10}_{-15}	279^{+10}_{-16}			
aN ³ LO QCD	$498 \substack{+16 \\ -12}$	545^{+17}_{-13}	$250 {+8 \atop -7}$	277^{+9}_{-7}			
$aN^3LO QCD + NLO EW$	$517 \substack{+14 \\ -12}$	$565\substack{+15\\-13}$	$262 {+8 \atop -7}$	290 + 8 - 7			

the $t\bar{t}W^+$ cross sections are larger than for $t\bar{t}W^-$

but the corrections are slightly bigger for $t\bar{t}W^-$

Comparison with 8 and 13 TeV CMS and ATLAS data NLO and even aNNLO results are not sufficient we need aN^3LO corrections to describe the data

At 8 TeV, measurements from CMS: 382_{-102}^{+117} fb and from ATLAS: 369_{-91}^{+100} fb Theoretical prediction is

 $aN^{3}LO \ QCD + NLO \ EW: 266^{+7}_{-12-6} \ fb$

At 13 TeV, CMS finds 868 ± 65 fb with $t\bar{t}W^+$ 553 ± 42 fb and $t\bar{t}W^ 343 \pm 36$ fb while ATLAS finds 880 ± 80 fb with $t\bar{t}W^+$ 583 ± 58 fb and $t\bar{t}W^ 296 \pm 40$ fb

Theoretical prediction is aN³LO QCD + NLO EW: 779_{-19-13}^{+22+12} fb with $t\bar{t}W^+$ 517_{-12-9}^{+14+8} fb and $t\bar{t}W^ 262_{-7-4}^{+8+4}$ fb

Top-quark p_T and rapidity distributions in $t\bar{t}W$ production at 13 TeV

K-factors decrease at larger top p_T

K-factors increase at larger rapidities

Top-quark p_T and rapidity distributions in $t\bar{t}W$ at 13.6 TeV

K-factors decrease at larger top p_T K-factors increase at larger rapidities

Summary

- $t\bar{t}W$ production
- soft-gluon corrections through aN³LO
- results for total cross sections and differential distributions
- higher-order corrections further enhance and improve the theoretical predictions
- agreement with LHC data within uncertainties