

The Inner Dark Matter Distribution in Hydrodynamic Simulations

In collaboration with: Lina Necib, Manoj Kaplinghat, Viraj Pandya, Stacy Kim, Justin Read

1

Abdelaziz Hussein

2

- **Why care about the density distribution?**
- **Cosmological simulations overview**
- **@DM Distribution in different simulation suites**
- **Adiabatic contraction overview**
- **Calculation overview**

Outline:

While traditionally a form for the DM density profile is assumed (NFW, Einasto,…), we can get a more informative result by using the density numerically calculated from the simulation.

$$
\sum \alpha \rho_{DM}^2
$$

Why care about the density distribution?

- For some DM models (ex: WIMPs) we get y-ray emission from **annhilation(Arcadi et al. 2018).**
- **The annihilation flux luminosity depends sensitively on** $\rho_{\bf DM}$ **.**

(Credit: Andrea Albert)

Cosmological simulations overview:

(credit: Phil Hopkins)

Cosmological simulations overview:

(credit: Phil Hopkins)

Cosmological simulations overview:

Largest difference within 1 kpc

Density similar for r > 1 kpc

How can we quantify the difference?

> **Can any of these be modeled through adiabatic contraction?**

DM Distribution in different simulation suites:

7

The gravitational field in the central regions of galaxies is dominated by stars.

The conserved quantities for eccentric orbits (Ghigna et al. 1998)

(Gnedin et al. 2004) argued that the conserved quantity r $M(\bar{r})$ is a better proxy for the radial **action.**

the radial action
$$
I_r \equiv \frac{1}{\pi} \int_{r_p}^{r_a} v_r dr
$$

8

Adiabatic contraction overview:

Inputs (all z=0):

DM distribution from DMO sim

A stellar distribution that is self similar to the DMO distribution

Stellar density profile from hydro sim

- $M_{\rm DM}^{\rm initial}(r_{\rm initial}) = M_{\rm DM}^{\rm final}(r_{\rm final})$
- r initial $(M$ initial $(\bar{r}$ initial) $+$ M initial $(\bar{r}$ initial)) $=r$ final $(M$ inal $(\bar{r}$ final) $+$ M stars $(\bar{r}$ final))

Adiabatic contraction input:

The ratio deviates within 10 kpc from 1 for FIRE sims relative to TNG50, Vintergatan and Auriga

Vintergatan, TNG50 and Auriga DM density profiles can be described using adiabatic contraction.

Results:

Adiabatic contraction

Strong Feedback

We will use AC to model the DM density profile of the MW

 Obtain photon emission from DM annihilation signal.

Conclusion:

11

Back up

Find fixed point

tested by (Gustafsson et al 2007)

Given such a wide eccentricity distribution, the orbit-averaged radius varies for particles at a given current radius r depending on the orbital phase. Nevertheless, the mean relation can be described by a power law function.

$$
\frac{100c}{100c}
$$
\n
$$
(5)
$$
\n
$$
\frac{100c}{DMO(r_{200c})} + M_{Stars}^{hydro}(r_{200c})
$$
\n
$$
\cdot f_{norm}) \cdot (1 - f_b)
$$
\n
$$
\cdot f_{norm}) \cdot f_b
$$
\n
$$
= r_{final}(M_{DM}^{final}(\bar{r}_{final}) + M_{Stars}^{final}(\bar{r}_{final}))
$$
\n(9)

$$
\bar{r} = r_{vir} A(\frac{r}{r_{vir}})^{w}
$$

Calculation overview:

 $f_b = \frac{M_{Stars}^{hydro}(r_{200})}{M_{DM}^{hydro}(r_{200})}$ $f_{norm} = \frac{M_{DM}^{hydro}(r_{200})}{M_{D}^{D}}$ $M_{\rm DM}^{\rm initial}(r) = (M_{DM}^{DMO}(r))$ $M_{\rm Stars}^{\rm initial}(r) = (M_{DM}^{DMO}(r))$ $r_{\rm initial}(M_{\rm DM}^{\rm initial}(\bar{r}_{\rm initial})+M_{\rm Stars}^{\rm initial}(\bar{r}_{\rm initial}))$

 $M_{\rm DM}^{\rm initial}(r_{\rm initial}) = M_{\rm DM}^{\rm final}(r_{\rm final})$

Assumptions:

Eccentric orbits (Ghigna et al. 1998)

Orbits have a wide distribution of eccentricities which should be taken to account.

Take this distribution into account by averaging over the population of orbits at a given radius:

Spherical symmetry

Conservation of angular momentum

Assume homologous contraction

$$
\bar{r} = r_{vir} A(\frac{r}{r_{vir}})^{w}
$$

Adiabatic contraction overview:

Adiabatic Contraction in TNG50:

10 kpc

Largest difference within 1 kpc

Density similar for r > 1 kpc

How can we quantify the difference?

> **Can any of these be modeled through adiabatic contraction?**

DM Distribution in different simulation suites:

Adiabatic Contraction in TNG50:

 $log M_* = 10.7$
 $z = 0$, ID = 502371

10 kpc

10.0 7.5

Thin disk Thick disk Bulge

The gravitational field in the central regions of galaxies is dominated by stars.

As the baryons condense in the center, they pull the dark matter particles inward thereby increasing their density in the central region.

(Gnedin et al. 2004) argued that the conserved quantity $r \; M(\bar{r})$ is a better **proxy for the radial action.**

-
-
-

The conserved quantities for eccentric orbits

the angular momentum *J*

the radial action
$$
I_r \equiv \frac{1}{\pi} \int_{r_p}^{r_a} v_r dr
$$

Adiabatic contraction overview:

Although dark matter exceeds baryonic matter by a factor of $\Omega_b\simeq 5\Omega_{DM}$

Adiabatic Contraction in FIRE m12s

$r M(\bar{r}) = const$ $\bar{r} = r_{vir} A($ *r* r_{vir} $A = 0.85, w = 0.85$ (Gnedin et al. 2004)

Looking at transformation

Adiabatic Contraction in Vintergatan Halo 685

