The Inner Dark Matter Distribution in Hydrodynamic Simulations

In collaboration with: Lina Necib, Manoj Kaplinghat, Viraj Pandya, Stacy Kim, Justin Read

DPF-PHENO 2024

Abdelaziz Hussein

Outline:

- Why care about the density distribution?
- **Cosmological simulations overview**
- **OM** Distribution in different simulation suites
- **Adiabatic contraction overview**
- **Calculation overview**

Why care about the density distribution?

- For some DM models (ex: WIMPs) we get γ -ray emission from annhilation(Arcadi et al. 2018).
- The annihilation flux luminosity depends sensitively on ρ_{DM} .

$$\searrow \mathscr{L} \propto \rho_{\rm DM}^2$$

While traditionally a form for the DM density profile is assumed (NFW, Einasto,...), we can get a more informative result by using the density numerically calculated from the simulation.

(Credit: Andrea Albert)

Cosmological simulations overview:

(credit: Phil Hopkins)

Cosmological simulations overview:

(credit: Phil Hopkins)

Cosmological simulations overview:

Simulations	Year	Technique	SMBH Feedback	$^m DM^{(M_{\odot})}$	m baryon $^{(M_{\odot})}$
Auriga L3	2017	Zoom in	Yes	5E+04	6E+03
FIRE-2	2017	Zoom in	No	3.5E+04	7.1E+O3
Vintergatan	2020	Zoom in	No	3.5E+04	7.07E+03
TNG-50	2019	Uniform Resolution	Yes	4.5E+05	8E+04

DM Distribution in different simulation suites:

Largest difference within 1 kpc

Density similar for r > 1 kpc

How can we quantify the difference?

Can any of these be modeled through adiabatic contraction?

Adiabatic contraction overview:

The gravitational field in the central regions of galaxies is dominated by stars.

The conserved quantities for eccentric orbits (Ghigna et al. 1998)

the radial action
$$I_r \equiv \frac{1}{\pi} \int_{r_p}^{r_a} v_r \, dr$$

(Gnedin et al. 2004) argued that the conserved quantity $r M(\bar{r})$ is a better proxy for the radial action.

Adiabatic contraction input:

Inputs (all z=0):

DM distribution from DMO sim

A stellar distribution that is self similar to the DMO distribution

Stellar density profile from hydro sim

- $M_{\rm DM}^{\rm inital}(r_{\rm inital}) = M_{\rm DM}^{\rm final}(r_{\rm final})$
- $r_{\text{initial}}(M_{\text{DM}}^{\text{initial}}(\bar{r}_{\text{initial}}) + M_{\text{Stars}}^{\text{initial}}(\bar{r}_{\text{initial}})) = r_{\text{final}}(M_{\text{DM}}^{\text{final}}(\bar{r}_{\text{final}}) + M_{\text{Stars}}^{\text{final}}(\bar{r}_{\text{final}}))$

Results:

The ratio deviates within 10 kpc from 1 for FIRE sims relative to **TNG50, Vintergatan and Auriga**

Vintergatan, TNG50 and Auriga DM density profiles can be described using adiabatic contraction.

Conclusion:

Adiabatic contraction

Strong Feedback

We will use AC to model the DM density profile of the MW

Obtain photon emission from DM annihilation signal.

Backup

Calculation overview:

 $f_b = \frac{M_{Stars}^{hydro}(r_{200})}{M_{DM}^{hydro}(r_{200})}$ $f_{norm} = \frac{M_{DM}^{hydro}(r_{200})}{M_{L}^{I}}$ $M_{\rm DM}^{\rm initial}(r) = (M_{DM}^{DMO}(r))$ $M_{\text{Stars}}^{\text{initial}}(r) = (M_{DM}^{DMO}(r))$ $r_{\text{initial}}(M_{\text{DM}}^{\text{initial}}(\bar{r}_{\text{initial}}) + M_{\text{Stars}}^{\text{initial}}(\bar{r}_{\text{initial}})) =$

 $M_{\rm DM}^{\rm inital}(r_{\rm inital}) = M_{\rm DM}^{\rm final}(r_{\rm final})$

$$\bar{r} = r_{vir} A(\frac{r}{r_{vir}})^w$$
 tes

Given such a wide eccentricity distribution, the orbit-averaged radius varies for particles at a given current radius r depending on the orbital phase. Nevertheless, the mean relation can be described by a power law function.

$$\frac{90c}{90c}$$

$$\frac{90c}{90c}$$

$$\frac{90c}{90c}$$

$$\frac{1}{90c}$$

$$\frac{1}{9}$$

$$\frac{1}{9}$$

$$\frac{1}{9}$$

$$\frac{1}{9}$$

$$\frac{1}{9}$$

$$\frac{1}{9}$$

$$\frac{1}{9}$$

$$\frac{1}{9}$$

$$\frac{1}{9}$$

$$(5)$$

$$(5)$$

$$(6)$$

$$(6)$$

$$(6)$$

$$(7)$$

$$(7)$$

$$(8)$$

$$= r_{\text{final}}(M_{\text{DM}}^{\text{final}}(\bar{r}_{\text{final}}) + M_{\text{Stars}}^{\text{final}}(\bar{r}_{\text{final}}))$$

$$(9)$$

Find fixed point

sted by (Gustafsson et al 2007)

Adiabatic contraction overview:

Assumptions:

Eccentric orbits (Ghigna et al. 1998)

Orbits have a wide distribution of eccentricities which should be taken to account.

Take this distribution into account by averaging over the population of orbits at a given radius:

$$\bar{r} = r_{vir} A(\frac{r}{r_{vir}})^w$$

Spherical symmetry

Conservation of angular momentum

Assume homologous contraction

Adiabatic Contraction in TNG50:

subhalo 372755		
		log M _* = 10.8 z = 0, ID = 372755
		10 kpc
		log M _* = 10.8 z = 0, ID = 372755
101	102	
r [kpc]		
		$\log M_{\star} = 10.8$

10 kpc

DM Distribution in different simulation suites:

Largest difference within 1 kpc

Density similar for r > 1 kpc

How can we quantify the difference?

Can any of these be modeled through adiabatic contraction?

Adiabatic Contraction in TNG50:

log M_{*} = 10.7 z = 0, ID = 502371

10 kpc

Thin disk

Thick disk

Bulge

Adiabatic contraction overview:

Although dark matter exceeds baryonic matter by a factor of $\Omega_b \simeq 5 \Omega_{DM}$

The gravitational field in the central regions of galaxies is dominated by stars.

As the baryons condense in the center, they pull the dark matter particles inward thereby increasing their density in the central region.

The conserved quantities for eccentric orbits

the angular momentum J

the radial action
$$I_r \equiv \frac{1}{\pi} \int_{r_p}^{r_a} v_r \ dr$$

(Gnedin et al. 2004) argued that the conserved quantity $r M(\bar{r})$ is a better proxy for the radial action.

Adiabatic Contraction in FIRE m12s

(Gnedin et al. 2004) $r M(\bar{r}) = const$ $\bar{r} = r_{vir} A(\frac{r}{r_{vir}})^w$ A = 0.85, w = 0.8

Looking at transformation

Adiabatic Contraction in Vintergatan Halo 685

