Constraining neutrino-DM interactions with Milky Way dwarf spheroidals and supernova neutrinos

arXiv:2402.08718 [in review]

Sean Heston DPF-Pheno 2024 May 15, 2024

Why use dwarf spheroidals?

- DM-only simulations show cuspy DM profiles for small halos [Navarro, Frenk, White (1996)]
 - These small halos host dwarf spheroidals (dSph)
 Observations suggest cored halos [Spergel and Steinhardt (2000)]
- Observations suggest cored halos [Spergel and Steinhardt (2000)]
- Need DM self-interactions or feedback from SM processes
 - Supernovae, star formation, etc.

Why use dwarf spheroidals?

- DM-only simulations show cuspy DM profiles for small halos [Navarro, Frenk, White (1996)]
 - These small halos host dwarf spheroidals (dSph)
 Observations suggest cored halos [Spergel and Steinhardt (2000)]
- Observations suggest cored halos [Spergel and Steinhardt (2000)]
- Need DM self-interactions or feedback from SM processes
 - Supernovae, star formation, etc.

Core-Collapse Supernovae

- Occurs for stars with $M > 8~M_{\odot}$
- Collapse when Fe core reaches Chandrasekhar mass (\sim 1.4 M $_{\odot}$)
- Release of $\sim 10^{58}$ neutrinos, total energy of 3×10^{53} erg
- Typical neutrino energies around 10 15 MeV

Overview of the Idea

- 1. DM halos initially form with cusped profiles
 - \succ Assume \land CDM, no DM self-interactions, ignore baryonic feedback
- 2. Massive stars form in dSph, eventually undergo core collapse and release neutrinos
- 3. SN neutrinos interact with DM, energy injection into DM
- Energy injection causes transition from cusped to cored profile, this is what we directly constrain
- 5. Turn energy constraint into cross section constraint

Finding Energy for Cusp \rightarrow Core

- Use the virial theorem $\Delta E = rac{W_{
 m core} W_{
 m cusp}}{2}$
- Depends on sub-halo DM params, found with stellar kinematic data

CCSNe Neutrino Energy Budget

- Estimate number of CCSNe in each dSph
 - Find stellar mass from luminosity M_{\odot}/L_{\odot} =1
 - Get number of massive stars from stellar initial mass function
- Each CCSNe emits 3×10^{53} erg in neutrinos
- Combining these gives total energy budget, want $E_{budget} \gg E_{transformation}$

Energy Constraint Example: Fornax

- Limit fraction of CCSN neutrino energy injected, $\varepsilon = E_{inj}/E_{budget}$
- Assume this is the only form of energy injection
 - Allows for conservative constraint
- Each dSph has a different constraint
 - Fornax has smallest $\varepsilon \sim 6.8 \times 10^{-6}$

Deriving Cross Section Bound

- Assume maximal energy transfer per interaction $\Delta E_{int} = \frac{2E_{\nu}^2}{2E_{\nu} + m_{DM}}$
 - Small escape velocities, Fornax is ~ 50 km/s
- Interaction fraction $\eta = N_{int}/N_{\nu}$, DM column number density Σ_{DM}
- Cross section $\sigma = \eta / \Sigma_{DM}$, for Fornax the bounds are as follows <u>Mass Loss Bound</u> <u>Energy Injection Bound</u>
- $m_{\rm DM} < 130~{\rm GeV}$ escapes sub-halo $m_{\rm DM} > 130~{\rm GeV}$ stays in sub-halo

•
$$N_{\text{int}} = \frac{\Delta M}{m_{\text{DM}}}$$

• $N_{int} = \frac{E_{\text{inj}}}{\Delta E_{\text{int}}}$
• $\sigma \approx 3.4 \times 10^{-23} \text{ cm}^2$
• $\sigma \approx 3.2 \times 10^{-27} \left(\frac{m_{\text{DM}}}{1 \text{ GeV}}\right)^2 \text{ cm}^2$

Summary

- Constrain interaction by mass loss or energy injection
- Slightly stronger bound in SN neutrino energy range than SN1987A
- Many assumptions are made in this phenomenological model that can affect the upper limit we find
 - Maximal energy transfer, no host halo effects, ignoring other types of baryonic-induced feedback, etc.
- Future telescopes should be able to reduce uncertainties on dSph DM sub-halo parameters (e.g. Vera C. Rubin Observatory)

Thank you!

Backup Slides

Environments for SN v Phenomenology

- Two important conditions
 - i. CCSNe have occurred locally
 - ii. Large amount of DM present, but not a very deep potential
- Automatically, we can focus on dwarf spheroidals (dSphs)
 - Small dwarf galaxies with low luminosities and old stellar population
- dSPhs observations suggest cored DM profiles, ΛCDM predicts cuspy profiles (in DM-only simulations)
 - Need <u>energy injection</u> for cusp \rightarrow core

Processes for Neutrino Production

Processes	Formulae		
Plasma	$\gamma^* \to \nu + \bar{\nu}$		
$\nu \bar{\nu}$ annihilation	$ u_a + \bar{\nu}_a \rightarrow \nu_b + \bar{\nu}_b $		
Photoneutrino	$\gamma + e^{\pm} \rightarrow e^{\pm} + \nu + \bar{\nu}$		
Nucleon-nucleon brehmsstrahlung	$NN' \rightarrow NN' + \nu \bar{\nu}$		
Pair	$e^+ + e^- \rightarrow \nu + \bar{\nu}$		
β^{\pm} decay	$A(N,Z) \to A(N-1,Z+1) + e^- + \bar{\nu_e}$		
	$A(N,Z) \to A(N+1,Z-1) + e^+ + \nu_e$		
e^-/e^+ capture	$A(N,Z) + e^- \to A(N+1,Z-1) + \nu_e$		
	$A(N,Z) + e^+ \to A(N-1,Z+1) + \bar{\nu_e}$		

Working Parts for Energy Constraint

• Density profile (Modified NFW) $ho(r) = rac{
ho_0 \, r_s^3}{(r_c+r)(r+r_s)^2}$

• Mass profile
$$\frac{M(r)}{M_0} = \begin{cases} \ln(1+\tilde{r}) - \frac{\tilde{r} (2+3\tilde{r})}{2(1+\tilde{r})^2}, \ x = 1\\ \frac{x^2 \ln(1+\tilde{r}/x) + (1-2x)\ln(1+\tilde{r})}{(1-x)^2} - \frac{\tilde{r}}{(1+\tilde{r})(1-x)}, \ x = 0\\ \text{with} \quad \tilde{r} \equiv r/r_{\rm s} \quad \text{and} \quad x = r/r_{\rm c} \end{cases}$$

- Work (from virial theorem) $W = -4\pi G_N \int_0^{r_{200}} r \,\rho(r) \,M(r) \,dr$
- Energy required for transformation $\Delta E = \frac{W_{
 m core} W_{
 m cusp}}{2}$

Dwarf Galaxy Properties

- Stellar mass from luminosity of the dwarf galaxy ($M_{\odot}/L_{\odot}=1$) [McConnachie (2012) & Hayashi+ (2022)]
- Estimate number of CCSNe from stellar mass assuming a Kroupa $M_* \frac{\int_{8 M_{\odot}}^{100 M_{\odot}} \xi(m) dm}{\int_{0.1 M_{\odot}}^{100 M_{\odot}} m \xi(m) dm}$ (2001) initial mass function

• Get virial radius as the distance at which the DM profile reaches 200 times the critical density, find virial mass then from integration

Name	$ ho_{ m s}{}^{ m a}$	$r_{\rm s}$ [pc]	$r_{\rm c}$ Lower	$r_{\rm c}~{ m Upper}$	Stellar	$r_{200} {\rm [pc]}$	$M_{200} [M_{\odot}]$
	$[M_{\odot}/{ m pc}]$		Bound [pc] ^b	Bound [pc]	Mass $[M_{\odot}]$		
Seg1	0.031587	2407.570	24	414	$3.4 imes 10^2$	23538.093730	8.14×10^{9}
Seg2	0.114640	143.324	403	3354	$8.6 imes 10^2$	2203.281263	7.87×10^{6}
Boo1	0.079187	320.852	739	3648	$2.9 imes 10^4$	4335.833187	5.73×10^{7}
Her	0.053277	342.402	454	3617	$3.7 imes 10^4$	4026.943038	4.37×10^7
Com	0.071163	381.789	218	1656	$3.7 imes 10^3$	4970.113877	8.51×10^7

Supernova Neutrino Energetics

- Assume each CCSN gives off 3×10^{53} erg in neutrinos
- Assume some energy transfer fraction (ε), which is our initial constraint value
- Test over multiple values of ε until we begin to have too much energy such that the DM cores become too large

Name	# Massive	DM- ν Energy	Energy	Lower Energy	Upper Energy
	Stars	Budget [erg]	Injected [erg]	Bound (1σ) [erg]	Bound (1σ) [erg]
Seg1	3.56	$1.07 imes 10^{54}$	$2.67 imes 10^{48}$	1.05×10^{54}	1.11×10^{55}
Seg2	9.01	$2.70 imes 10^{54}$	$6.76 imes10^{48}$	5.28×10^{50}	$7.54 imes 10^{50}$
Boo1	303.91	$9.12 imes10^{55}$	$2.28 imes10^{50}$	1.25×10^{52}	$1.74 imes 10^{52}$
Her	387.75	$1.16 imes 10^{56}$	$2.91 imes 10^{50}$	5.98×10^{51}	$9.84 imes 10^{51}$
\mathbf{Com}	38.77	$1.16 imes 10^{55}$	$2.91 imes10^{49}$	$1.34 imes 10^{52}$	$2.77 imes 10^{52}$

Z' model

- Simple model, assume exchange of a vector boson (Z')
 - Two couplings, g_{ν} which is the same for all flavors and g_{χ} for DM

$$\sigma_{\nu-\text{DM}} \approx \begin{cases} \frac{g_{\nu}^2 g_{\chi}^2}{4\pi m_{Z'}^4} \left[1 - \frac{m_{Z'}^2}{2m_{\chi} E_{\nu}} \ln \left(1 + \frac{2m_{\chi} E_{\nu}}{m_{Z'}^2} \right) \right], & E_{\nu} >> m_{\chi}, \\ \frac{g_{\nu}^2 g_{\chi}^2 m_{\chi} E_{\nu}}{4\pi m_{Z'}^4}, & E_{\nu} << m_{\chi}, \end{cases}$$

Full cross section for Z' model

$$\frac{d\sigma}{d\cos\theta} = \frac{g^2 g'^2 E_{\nu}^2 m_{\chi}^2 ((1-x^2) E_{\nu} m_{\chi} + (1-x)^2 E_{\nu}^2 + (1+x) m_{\chi}^2)}{4\pi \left((1-x) E_{\nu} + m_{\chi}\right) \left((1-x) E_{\nu} m_{\phi}^2 + m_{\chi} \left(m_{\phi}^2 - 2(x-1) E_{\nu}^2\right)\right)^2},$$

$$\begin{split} \sigma &= \frac{g^2 g'^2}{16\pi E_{\nu}^2 m_{\chi}^2} \Bigg[(m_{\phi}^2 + m_{\chi}^2 + 2E_{\nu}m_{\chi}) \log \left(\frac{m_{\phi}^2 (2E_{\nu} + m_{\chi})}{m_{\chi} (4E_{\nu}^2 + m_{\phi}^2) + 2E_{\nu}m_{\phi}^2} \right) \\ &+ 4E_{\nu}^2 \left(1 + \frac{m_{\chi}^2}{m_{\phi}^2} - \frac{2E_{\nu} (4E_{\nu}^2 m_{\chi} + E_{\nu}(m_{\chi}^2 + 2m_{\phi}^2) + m_{\chi}m_{\phi}^2}{(2E_{\nu} + m_{\chi})(m_{\chi} (4E_{\nu}^2 + m_{\phi}^2) + 2E_{\nu}m_{\phi}^2)} \right) \Bigg] \end{split}$$

Argüelles, Kheirandish, Vince (2017)

