BEYOND KINEMATICS FOR OPTIMAL HADRONIC TOP QUARK POLARIMETRY II

ZHONGTIAN DONG

UNIVERSITY OF KANSAS

BASED ON ARXIV:2405.XXXXX IN COLLABORATION WITH D. GONÇALVES, K.C. KONG, A. LARKOSKI, A. NAVARRO

SPIN ANALYZING POWER FROM ANGULAR DISTRIBUTION

The spin correlation between the top decay products and top propagation direction in the top rest frame is as follows:

$$\frac{1}{\Gamma} \frac{d\Gamma}{d\cos\theta_a} = \frac{1}{2} \left(1 + p\beta_a \cos\theta_a \right) \qquad \beta = \begin{cases} +1.0 & \text{for } \ell^+ \text{ or } \bar{d} \\ -0.31 & \text{for } \nu \text{ or } u \\ -0.41 & \text{for } b \end{cases}$$
Brandenburg, Si, Uwer 2002

• The original optimal direction is constructed as follows:

$$q_{\rm opt} \equiv p(d \rightarrow q_{\rm soft}) \hat{q}_{\rm soft} + p(d \rightarrow q_{\rm hard}) \hat{q}_{\rm hard}$$
 Tweedie 2014

- We will replace the probability with neural network output scores and apply on both left hand and right hand polarized top jet samples and check the corresponding cosine distributions.
- We will also check the vector length $|\vec{q}_{opt}|$ of the NN constructed direction.
- Using soft quark direction gives equivalent $\beta = 0.5$

MACHINE LEARNING STRATEGY

- Light jet flavor identification within top jet cone
- Input the jet constituent momenta and charge information for each of the subjets.
- Train the neural network to identify the down-type jet.
- Interpret the neural network score as the probability of each jet being down-type.

DATA PREPARATION

- We generate I4TeV $pp \rightarrow t\bar{t} \rightarrow \ell^- \nu 2b2j$ events using MG5, with no cuts except for $p_{Tt} > 200$ GeV.
- Three sets of samples where the top quark is unpolarized, left hand polarized and right hand polarized in the $t\bar{t}$ rest frame.
- Parton shower and hadronization are done with PYTHIA8 without MPI.
- Identify the top jet using CA algorithm with R = 1.5, and $p_T > 250$ GeV. And decluster following the algorithm to find the subjets. Tweedie 2014
- We match the hadron level jets with true parton level momenta, by using the smallest ΔR between the two.

NETWORK ARCHITECTURE

- We modified based on the ParticleNet architecture by utilizing three separate graph convolutions instead of one, corresponding to each of the jet inputs.
 Qu, Gouskos 2019
- The three graphs are then pooled and concatenated.
- Additional features for the overall top jet can also be fed into the linear layers.

INPUT FEATURES

Variable	Definition		
$\Delta \eta_t$	difference in pseudorapidity between the		
	particle and the top jet axis		
$\Delta \phi_t$	difference in azimuthal angle between the		
	particle and the top jet axis		
$\Delta \eta_j$	difference in pseudorapidity between the		
	particle and the subjet axis		
$\Delta \phi_j$	difference in azimuthal angle between the		
	particle and the subjet axis		
$\log p_T$	logarithm of the particle's p_T		
$\log E$	logarithm of the particle's Energy		
q	electric charge of the particle		
isElectron	if the particle is an electron		
isMuon	if the particle is a muon		
isPhoton	if the particle is a photon		
isChargedHadron	if the particle is a charged hadron		
isNeutralHadron	if the particle is a neutral hadron		

- Each particles within the jets will be associated with two sets of coordinates: the η and φ with respect to the top jet axis, or with respect to the individual subjet axis.
- The log-normalized energy and transverse momentum of each particles.
- Basic particle identification information.
- One could try to include more precise PID, separating the charged hadrons.

PERFORMANCE ON JET FLAVOR IDENTIFICATION

- The ROC curve of the network trained and tested on the unpolarized top data.
- "kinematics" curve is the baseline constructed using a fully connected DNN with jet momenta input.

PERFORMANCE ON JET FLAVOR IDENTIFICATION

- With graph architecture tested on inputs:
- Kinematics of the constituents
- Kinematics + charge
- Kinematics + charge+ basic ID

DEPENDENCE ON TOP POLARIZATION

Parton (solid line) vs. reconstructed (dashed line)

9

COMPARISON BETWEEN METHODS

	β_k	Left hand	Right hand
	β_b	-0.214	-0.371
Matched	β_{soft}	0.194	0.530
Hadron	β_{opt}	0.247	0.624
	$ec{q}_{opt}$	0.636	0.638
DNN	β_{DNN}	0.253	0.618
	$ \vec{q}_{DNN} $	0.622	0.625
GNN	β_{GNN}	0.313	0.648
GINI	\vec{q}_{GNN}	0.678	0.685
	β_b	-0.295	-0.392
	β_{soft}	0.300	0.589
Matched	β_{opt}	0.407	0.659
Parton	$ec{q}_{opt}$	0.634	0.634

- In general, neural network constructed directions outperforms the original optimal direction at the hadron level in terms of spin correlation.
- Compared to the same events at parton level, the spin correlation is in between soft direction and the original optimal direction.
- The length of the vector is not a good indicator of spin correlation after selections.

SPIN CORRELATION (β) BASED ON CUTS

- Furthermore, we can put cuts on the neural network scores to significantly improve the spin correlation.
- We can apply large cuts on the events as long as we still have a larger cross section than dileptonic tt
- With the same cuts, not only the does the spin correlation of the NN constructed direction improves, but so does the original optimal direction.

SUMMARY AND DISCUSSION

- We can train a machine learning model on identifying the light jet flavor within the top jet and use it to improve the spin analyzing power of the hadronic top.
- With the inclusion of variables beyond kinematic information in the input, we can improve the spin analyzing power compared to the direction constructed using only kinematics.
- The neural networks also provides a way to make selections on the events to improve the spin analyzing power, which means better top spin measurements.

RESULTS USING ALL PARTICLE ID INFORMATION

Possible improvements with precise charged hadron identification. (Pion, Kaon, Proton)

ROC CURVE ON POLARIZED TOP SAMPLES

14

GRAPH CONVOLUTION

- Data represented as point cloud
- Convolutions on edges of the graph

