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Introduction: Jets in ATLAS
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Jets in ATLAS
‣ Proton collisions result in high-energy 

particles which pass through detector


‣ Jets: Collimated sprays of particles 
initiated by quarks and gluons


‣ ATLAS jets built from EM-scale calorimeter 
energy deposits and tracking information


‣ Using anti-  jet algorithm with  

for small-R (  for large-R) jets


‣ End result: object representing best 
reconstruction of detected parton’s energy 
and direction

kt R = 0.4
1.0

[1]

[1]: High-pT multi-jet final states at ATLAS and CMS

https://arxiv.org/abs/1606.08283
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Current Calibration
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[1]: Jet energy calibration at the LHC

https://arxiv.org/abs/1509.05459
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[1]: Jet energy calibration at the LHC

https://arxiv.org/abs/1509.05459


The Machine Learning Approach
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Why Machine Learning?
‣ Current calibration costly in both time and 

effort


‣ ~1 year per full calibration


‣ Pile-up correction results in artifacts which 
must be corrected


‣ ML approach to GSC and large-R jets 
already successful


‣ Goal: Motivate and implement a ML 
network for small-R pile-up and JES 
calibrations in the HL-LHC

[1]: Determination of jet calibration and energy resolution in proton-proton collisions at √s = 8 TeV using the ATLAS detector

[1]

https://arxiv.org/abs/1910.04482
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Why Machine Learning?
‣ Current calibration costly in both time and 

effort


‣ ~1 year per full calibration


‣ Pile-up correction results in artifacts which 
must be corrected


‣ ML approach to GSC and large-R jets 
already successful


‣ Goal: Motivate and implement a ML 
network for small-R pile-up and JES 
calibrations in the HL-LHC

[2]: Simultaneous energy and mass calibration of large-radius jets with the ATLAS detector using a deep neural network

[2]

https://arxiv.org/abs/2311.08885
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Network Parameters
‣ Using MC EMTopo jets with 


‣ ~ 5 million jets


‣ Use mean absolute error (MAE) loss 
function


‣ 


‣ Target distribution median


‣ Avoid sensitivity to outliers


‣ Similar target to Large-R network

|η | ≤ 4.5

ℒ =
1
n

i=1

∑
n

yi,pred − yi,true
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Network Parameters
‣ Provide most of jet 4-vector 

 at constituent level


‣ Also provide pile-up information 



‣ Main correction target: 


‣ Train for 25 epochs with variable 
learning rate


‣ Loss convergence for testing/validation 
set


‣ Quick training means faster 
development

(EConstit, η, ϕ)

(NPV, μ, ρ, A)
EConstit − ρ ⋅ A

ETruth
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Network Structure
‣ Motivate simplest possible DNN to perform calibration


‣ MAE Loss function: ℒ(ytrue, ypred) =
1
n

n

∑
i=1

yi,true(θ) − yi,pred(θ)

ROOT File (Training)

NPV

μ ρ

ηϕ

Ereco
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Network Structure
‣ Motivate simplest possible DNN to perform calibration


‣ MAE Loss function: ℒ(ytrue, ypred) =
1
n

n

∑
i=1

yi,true(θ) − yi,pred(θ)

ROOT File (Training)

NPV

μ ρ

ηϕ

Ereco

Per-jet calibration factor


R

ROOT File (Calibration)

NPV

μ

ηϕ

Ereco

ρ



Current Results
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Calibration Performance - Energy Ratios
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Calibration Performance - Energy Ratios
‣ Network can shift mean/median response and accomplish nominal task
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Future Studies and Considerations
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Loss Function Extensions
‣ Several groups exploring Mixture Density 

Networks (MDNs)[APS]


‣ Fit  Gaussians to input distribution


‣ Return amplitude,  for each 

‣ Effectively generate PDF for possible corrections

K
μ, σ

PFlow Jets
‣ Associate inner tracker information with 

EMTopo clusters forming each jet


‣ Improves low-  jet resolution, reconstruction 
efficiency

‣ Combats pile-up instability

pT

[1]

[1]: Jet reconstruction and performance using particle flow with the ATLAS Detector

https://apsapp.bravuratechnologies.com/APS-WEB/?id=33600025#!/login
https://arxiv.org/abs/1703.10485


Questions?



Backup
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Overview

‣ Overall: Develop ML-based MCJES calibration for 
upcoming R24 HL-LHC MC samples

‣ Initially built on Run 3 framework developed by Kevin 

Greif in coordination with Chris Pollard & Jennifer Roloff 
[1]


‣ Develop/cross-check new ML calibration 
performance against existing 21.9 EMTopo jet 
calibration

‣ Use same inputs & evaluate performance against 

Jingjing Pan's R21.9 EMTopo jet calibration (residual 
pileup + MCJES corrections)[2]


‣ Network output: set of calibrated weights which 
generate all-in-one scalar jet correction R(Xreco, θ)

pcorr = preco − ρ × A − α × (NPV − 1) − β × μ

Current jet calibration

ML-based calibration

Stage I: Pileup Correction

Stage II: JES Correction

Ecorr = ℛ(Ereco) * Ereco ≈ ℛ(N(Ereco/Etrue)) * Ereco

Stage II: GSC Correction

Ecorr = ℛ( fcharged, fTile0, wtrk…) * Ereco

Stage I: Train

R(Xreco, θ) = (Xreco

Xtrue ) * f (θ)

Stage II: Calibrate 

Xcalib =
1
R

XReco =
Xtrue

Xreco
Xreco ≈ Xtrue

https://gitlab.cern.ch/atlas-jetetmiss/definitions/ml-jetcalib%5D
https://its.cern.ch/jira/browse/ATLJETMET-1273
https://its.cern.ch/jira/browse/ATLJETMET-1273
https://its.cern.ch/jira/browse/ATLJETMET-1273
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What is a jet?
‣ Jet = closest physics object to original parton

‣ Offer multiplicity, , and substructure signatures


‣ Defined by parameter(s) and recombination scheme

‣ Must nominally meet Snowmass Conditions

‣ “Simple” to use in theory/experiment


‣ Yields finite, hadronization-insensitive 

‣ Definition choice heavily dependent on use-case

‣ “No single optimal way of defining jets”


‣ Upcoming R3/HL-LHC demand high performance 
across various aspects

‣ Energy resolution, pileup correction, readout time…


‣ “…no single jet definition will work optimally for the whole 
range of LHC phenomena”

pT

σ
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Sequential Recombination (Anti )−kt

‣ Bottom-up jet construction

‣ Build jets on shared metric, not from singular seed

‣ Assign clustering sequence to jet substructure


‣ For set of particles :


‣ Find all distance measures 


‣ Locate pair  corresponding to min 


‣ IF( ): Declare  final-state jet and repeat


‣ ELIF( ): merge  into single protojet 

‣ If particles remain: repeat procedure

‣ ELSE: Assign all remaining objects to be jets and 

terminate

‣ Jets built out around harder seeds 


‣ Fully inclusive, relatively fast [ ], and IRC-
safe

{n}
dij

{i, j} {dij}
diB = dmin i

dmin > dcut {i, j}

𝒪(N n)

dij = min [p−2
T,i , p−2

T, j]
ΔR2

ij

R2
diB = p−2

T,i
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ATLAS Jet Inputs
‣ Through Run 2: EMTopo Jets

‣ Massless clustering of calorimeter cells (topo-clusters)

‣ Cut on deposited energy/noise ratio with vertex 

correction

‣ Moving forward: Particle Flow (PFlow) Jets

‣ Combine calorimeter towers with tracking data


‣ Link EMTopo cluster to low-  tracks


‣ Remove EMTopo energy/replace with particle 

‣ Leave remnant EMTopo clusters + hard tracks


‣ Better resolution ( ), pileup stability, reco. Efficiency


‣ Better captures low-  regime (< 40 GeV)


‣ Jet inputs passed to anti  algorithm with  
(  for fat jets)

pT
pT

E, ϕ
pT

−kt R = 0.4
1.0
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Residual Pileup Correction
‣ First (central, low-occupancy) correction: reduce added 

 due to pileup using -based density measure


‣ Determine passive jet area  using “ghosts”


‣ Calculate  density  in  with 


‣ Best measure of soft pileup background


‣ Scale jet  by -subtracted  to original  ratio


‣ Second (forward, high-occupancy) correction: match 
 to 


‣ Function of  and 


‣ Final correction given by 



‣ Fit in bins of 

pT kT
a

pT ρ = ⟨pT

A ⟩ y − ϕ |η | < 2

( ⃗E , ⃗p) ρ pT pT

pT,reco pT,truth
NPV μ

pcorr = preco − ρ × A − α × (NPV − 1) − β × μ
|ηdet |
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MCJES/  Correctionη
‣ Jet Energy Scale (JES) accounts energy loss 

within the detector

‣ Match truth jets to isolated reco. Jets within 




‣ Define jet energy response  as mean of 



‣ Numerically invert distribution to find 

‣ Scale jet four-momentum accordingly


‣  correction accounts for calorimeter edges/energy 
responses

‣ Similar methodology


‣ Only alters  and  measurements, not four-vector

ΔR = 0.3
ℛ

N(Ereco/Etrue)
ℛ(Ereco)

η

⃗p η
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Global Sequential Calibration
‣ Accounts for remaining jet physics which bias detector 

response

‣ Quark vs. gluon jets: hard hadron signals vs. soft, 

transverse profile

‣ Quark flavor/energy distribution bias reconstruction as 

well


‣ Goal: improve jet resolution [ ] 
while maintaining JER


‣ Six independent scaling parameters derived for:

‣ 


‣ 


‣ 


‣  = # of associated 1-GeV tracks


‣  = average transverse distance between jet axis and all 
associated 1-GeV tracks


‣  = # of associated muon track segments


‣ Derivation follows MCJES inversion-based procedure

σℛ ← N(preco
T /ptrue

T )

fcharged = {pT > 500M, |ηdet | < 2.5}
fTile0 = {first tile layer, |ηdet | < 1.7}
fLAr3 = {third LAr layer, |ηdet | < 3.5}
ntrk

wtrk

nseg
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Looking Forward: HL-LHC
‣ Main challenge: pileup up to 

‣ Dominant systematic for low-  (< 40 GeV) jets

‣ Few studies on anticipated HL-LHC jet resolution


‣ Understanding upgraded detector effects

‣ Improved calorimeter resolution


‣ More localized energy deposits = better EMTopo 
clusters


‣ Improved forward region tracking

‣ Improved timing w/ HGTD

‣ 1 MHz triggering


‣ Overall: need to simulate and understand jet 
performance under HL-LHC conditions

< μ > = 200
pT
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‣ R21.9

‣ mc15_14TeV.800292.Py8EG_A14NNPDF23LO_jetjet_JZ2WithSW.recon.AOD.e8185_s3770_s3773_r13619


‣ R23

‣ mc21_14TeV.801165.Py8EG_A14NNPDF23LO_jj_JZ0.deriv.DAOD_PHYSVAL.e8481_s4038_r14362_p5608

Current Dijet Samples
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Leading Jet  Distributions - Truth + ConstitpT

Slight Excess (180-190 GeV)
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Leading Jet  Distributions - Pileup + JESpT

Slight Excess (180-190 GeV)
Slight Excess (180-190 GeV)
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Calibrated v. True Energy

‣ ~100 GeV spread in calibrated 
energy for given truth value


‣ Exacerbated in pileup region

33
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‣ Confirm similar low-E 
distribution within 21.9 
samples

‣ Not a network feature


‣ Network unable to pull out 
constituent calibration when 
inherent to distribution


‣ Reinforces this is a sample 
issue, needs to be addressed 
for further attempts at ML 
calibration

 DistributionE − ρ ⋅ A
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Loss Function
‣ Evaluate possible loss functions 

starting from mean square error


‣ Goal: motivate the simplest possible 

network structure without 

compromising on performance


‣ Default TF options do well but still lacking


‣ End up back where we started at a Mixture 

Density Network (MDN)


‣ Simpler this time!


‣ Still developing optimal implementation


‣ 4.9M jets ~ 1 hour training, currently
Jet truth (black) and predicted (yellow) energy values using the RMSLE 

loss function

Jet Energy (GeV)

Jet Energy
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ℒ(y ∣ x) = − log [

K

∑
k

Πk(x)ϕ(y, μ(x), σ(x))]


