
Jet Calibration in ATLAS Using Machine Learning

Benji Lunday (University of Pennsylvania)

May 15th, 2024



Introduction: Jets in ATLAS
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Jets in ATLAS
‣ Proton collisions result in high-energy 

particles which pass through detector 

‣ Jets: Collimated sprays of particles 
initiated by quarks and gluons 

‣ ATLAS jets built from EM-scale calorimeter 
energy deposits and tracking information 

‣ Using anti-  jet algorithm with  

for small-R (  for large-R) jets 

‣ End result: object representing best 
reconstruction of detected parton’s energy 
and direction

kt R = 0.4
1.0

[1]

[1]: High-pT multi-jet final states at ATLAS and CMS

https://arxiv.org/abs/1606.08283
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Current Calibration

[1]

[1]: Jet energy calibration at the LHC

https://arxiv.org/abs/1509.05459
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[1]: Jet energy calibration at the LHC
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The Machine Learning Approach
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Why Machine Learning?
‣ Current calibration costly in both time and 

effort 

‣ ~1 year per full calibration 

‣ Pile-up correction results in artifacts which 
must be corrected 

‣ ML approach to GSC and large-R jets 
already successful 

‣ Goal: Motivate and implement a ML 
network for small-R pile-up and JES 
calibrations in the HL-LHC

[1]: Determination of jet calibration and energy resolution in proton-proton collisions at √s = 8 TeV using the ATLAS detector

[1]

https://arxiv.org/abs/1910.04482
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Why Machine Learning?
‣ Current calibration costly in both time and 

effort 

‣ ~1 year per full calibration 

‣ Pile-up correction results in artifacts which 
must be corrected 

‣ ML approach to GSC and large-R jets 
already successful 

‣ Goal: Motivate and implement a ML 
network for small-R pile-up and JES 
calibrations in the HL-LHC

[2]: Simultaneous energy and mass calibration of large-radius jets with the ATLAS detector using a deep neural network

[2]

https://arxiv.org/abs/2311.08885
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Network Parameters
‣ Using MC EMTopo jets with  

‣ ~ 5 million jets 

‣ Use mean absolute error (MAE) loss 
function 

‣  

‣ Target distribution median 

‣ Avoid sensitivity to outliers 

‣ Similar target to Large-R network

|η | ≤ 4.5

ℒ =
1
n

i=1

∑
n

yi,pred − yi,true
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Network Parameters
‣ Provide most of jet 4-vector 

 at constituent level 

‣ Also provide pile-up information 
 

‣ Main correction target:  

‣ Train for 25 epochs with variable 
learning rate 

‣ Loss convergence for testing/validation 
set 

‣ Quick training means faster 
development

(EConstit, η, ϕ)

(NPV, μ, ρ, A)
EConstit − ρ ⋅ A

ETruth
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Network Structure
‣ Motivate simplest possible DNN to perform calibration 

‣ MAE Loss function: ℒ(ytrue, ypred) =
1
n

n

∑
i=1

yi,true(θ) − yi,pred(θ)

ROOT File (Training)

NPV

μ ρ

ηϕ

Ereco
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Network Structure
‣ Motivate simplest possible DNN to perform calibration 

‣ MAE Loss function: ℒ(ytrue, ypred) =
1
n

n

∑
i=1

yi,true(θ) − yi,pred(θ)

ROOT File (Training)

NPV

μ ρ
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Ereco

Per-jet calibration factor 

R

ROOT File (Calibration)

NPV

μ

ηϕ

Ereco

ρ



Current Results
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Calibration Performance - Energy Ratios
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Calibration Performance - Energy Ratios
‣ Network can shift mean/median response and accomplish nominal task
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Future Studies and Considerations
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Loss Function Extensions
‣ Several groups exploring Mixture Density 

Networks (MDNs)[APS] 

‣ Fit  Gaussians to input distribution 

‣ Return amplitude,  for each  
‣ Effectively generate PDF for possible corrections

K
μ, σ

PFlow Jets
‣ Associate inner tracker information with 

EMTopo clusters forming each jet 

‣ Improves low-  jet resolution, reconstruction 
efficiency 
‣ Combats pile-up instability

pT

[1]

[1]: Jet reconstruction and performance using particle flow with the ATLAS Detector

https://apsapp.bravuratechnologies.com/APS-WEB/?id=33600025#!/login
https://arxiv.org/abs/1703.10485


Questions?



Backup
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Overview

‣ Overall: Develop ML-based MCJES calibration for 
upcoming R24 HL-LHC MC samples 
‣ Initially built on Run 3 framework developed by Kevin 

Greif in coordination with Chris Pollard & Jennifer Roloff 
[1] 

‣ Develop/cross-check new ML calibration 
performance against existing 21.9 EMTopo jet 
calibration 
‣ Use same inputs & evaluate performance against 

Jingjing Pan's R21.9 EMTopo jet calibration (residual 
pileup + MCJES corrections)[2] 

‣ Network output: set of calibrated weights which 
generate all-in-one scalar jet correction R(Xreco, θ)

pcorr = preco − ρ × A − α × (NPV − 1) − β × μ

Current jet calibration

ML-based calibration

Stage I: Pileup Correction

Stage II: JES Correction

Ecorr = ℛ(Ereco) * Ereco ≈ ℛ(N(Ereco/Etrue)) * Ereco

Stage II: GSC Correction

Ecorr = ℛ( fcharged, fTile0, wtrk…) * Ereco

Stage I: Train

R(Xreco, θ) = (Xreco

Xtrue ) * f (θ)

Stage II: Calibrate 

Xcalib =
1
R

XReco =
Xtrue

Xreco
Xreco ≈ Xtrue

https://gitlab.cern.ch/atlas-jetetmiss/definitions/ml-jetcalib%5D
https://its.cern.ch/jira/browse/ATLJETMET-1273
https://its.cern.ch/jira/browse/ATLJETMET-1273
https://its.cern.ch/jira/browse/ATLJETMET-1273
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What is a jet?
‣ Jet = closest physics object to original parton 
‣ Offer multiplicity, , and substructure signatures 

‣ Defined by parameter(s) and recombination scheme 
‣ Must nominally meet Snowmass Conditions 
‣ “Simple” to use in theory/experiment 

‣ Yields finite, hadronization-insensitive  
‣ Definition choice heavily dependent on use-case 
‣ “No single optimal way of defining jets” 

‣ Upcoming R3/HL-LHC demand high performance 
across various aspects 
‣ Energy resolution, pileup correction, readout time… 

‣ “…no single jet definition will work optimally for the whole 
range of LHC phenomena”

pT

σ



24

Sequential Recombination (Anti )−kt

‣ Bottom-up jet construction 
‣ Build jets on shared metric, not from singular seed 
‣ Assign clustering sequence to jet substructure 

‣ For set of particles : 

‣ Find all distance measures  

‣ Locate pair  corresponding to min  

‣ IF( ): Declare  final-state jet and repeat 

‣ ELIF( ): merge  into single protojet  
‣ If particles remain: repeat procedure 
‣ ELSE: Assign all remaining objects to be jets and 

terminate 
‣ Jets built out around harder seeds  

‣ Fully inclusive, relatively fast [ ], and IRC-
safe

{n}
dij

{i, j} {dij}
diB = dmin i

dmin > dcut {i, j}

𝒪(N n)

dij = min [p−2
T,i , p−2

T, j]
ΔR2

ij

R2
diB = p−2

T,i
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ATLAS Jet Inputs
‣ Through Run 2: EMTopo Jets 
‣ Massless clustering of calorimeter cells (topo-clusters) 
‣ Cut on deposited energy/noise ratio with vertex 

correction 
‣ Moving forward: Particle Flow (PFlow) Jets 
‣ Combine calorimeter towers with tracking data 

‣ Link EMTopo cluster to low-  tracks 

‣ Remove EMTopo energy/replace with particle  
‣ Leave remnant EMTopo clusters + hard tracks 

‣ Better resolution ( ), pileup stability, reco. Efficiency 

‣ Better captures low-  regime (< 40 GeV) 

‣ Jet inputs passed to anti  algorithm with  
(  for fat jets)

pT
pT

E, ϕ
pT

−kt R = 0.4
1.0
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Residual Pileup Correction
‣ First (central, low-occupancy) correction: reduce added 

 due to pileup using -based density measure 

‣ Determine passive jet area  using “ghosts” 

‣ Calculate  density  in  with  

‣ Best measure of soft pileup background 

‣ Scale jet  by -subtracted  to original  ratio 

‣ Second (forward, high-occupancy) correction: match 
 to  

‣ Function of  and  

‣ Final correction given by 
 

‣ Fit in bins of 

pT kT
a

pT ρ = ⟨pT

A ⟩ y − ϕ |η | < 2

( ⃗E , ⃗p) ρ pT pT

pT,reco pT,truth
NPV μ

pcorr = preco − ρ × A − α × (NPV − 1) − β × μ
|ηdet |
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MCJES/  Correctionη
‣ Jet Energy Scale (JES) accounts energy loss 

within the detector 
‣ Match truth jets to isolated reco. Jets within 

 

‣ Define jet energy response  as mean of 
 

‣ Numerically invert distribution to find  
‣ Scale jet four-momentum accordingly 

‣  correction accounts for calorimeter edges/energy 
responses 
‣ Similar methodology 

‣ Only alters  and  measurements, not four-vector

ΔR = 0.3
ℛ

N(Ereco/Etrue)
ℛ(Ereco)

η

⃗p η
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Global Sequential Calibration
‣ Accounts for remaining jet physics which bias detector 

response 
‣ Quark vs. gluon jets: hard hadron signals vs. soft, 

transverse profile 
‣ Quark flavor/energy distribution bias reconstruction as 

well 

‣ Goal: improve jet resolution [ ] 
while maintaining JER 

‣ Six independent scaling parameters derived for: 
‣  

‣  

‣  

‣  = # of associated 1-GeV tracks 

‣  = average transverse distance between jet axis and all 
associated 1-GeV tracks 

‣  = # of associated muon track segments 

‣ Derivation follows MCJES inversion-based procedure

σℛ ← N(preco
T /ptrue

T )

fcharged = {pT > 500M, |ηdet | < 2.5}
fTile0 = {first tile layer, |ηdet | < 1.7}
fLAr3 = {third LAr layer, |ηdet | < 3.5}
ntrk

wtrk

nseg
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Looking Forward: HL-LHC
‣ Main challenge: pileup up to  
‣ Dominant systematic for low-  (< 40 GeV) jets 
‣ Few studies on anticipated HL-LHC jet resolution 

‣ Understanding upgraded detector effects 
‣ Improved calorimeter resolution 

‣ More localized energy deposits = better EMTopo 
clusters 

‣ Improved forward region tracking 
‣ Improved timing w/ HGTD 
‣ 1 MHz triggering 

‣ Overall: need to simulate and understand jet 
performance under HL-LHC conditions

< μ > = 200
pT
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‣ R21.9 
‣ mc15_14TeV.800292.Py8EG_A14NNPDF23LO_jetjet_JZ2WithSW.recon.AOD.e8185_s3770_s3773_r13619 

‣ R23 
‣ mc21_14TeV.801165.Py8EG_A14NNPDF23LO_jj_JZ0.deriv.DAOD_PHYSVAL.e8481_s4038_r14362_p5608

Current Dijet Samples
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Leading Jet  Distributions - Truth + ConstitpT

Slight Excess (180-190 GeV)
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Leading Jet  Distributions - Pileup + JESpT

Slight Excess (180-190 GeV)
Slight Excess (180-190 GeV)
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Calibrated v. True Energy

‣ ~100 GeV spread in calibrated 
energy for given truth value 

‣ Exacerbated in pileup region

33
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‣ Confirm similar low-E 
distribution within 21.9 
samples 
‣ Not a network feature 

‣ Network unable to pull out 
constituent calibration when 
inherent to distribution 

‣ Reinforces this is a sample 
issue, needs to be addressed 
for further attempts at ML 
calibration

 DistributionE − ρ ⋅ A
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Loss Function
‣ Evaluate possible loss functions 

starting from mean square error 

‣ Goal: motivate the simplest possible 

network structure without 

compromising on performance 

‣ Default TF options do well but still lacking 

‣ End up back where we started at a Mixture 

Density Network (MDN) 

‣ Simpler this time! 

‣ Still developing optimal implementation 

‣ 4.9M jets ~ 1 hour training, currently
Jet truth (black) and predicted (yellow) energy values using the RMSLE 

loss function

Jet Energy (GeV)

Jet Energy
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ℒ(y ∣ x) = − log [

K

∑
k

Πk(x)ϕ(y, μ(x), σ(x))]


