

Jet Calibration in ATLAS Using Machine Learning

Benji Lunday (University of Pennsylvania)

May 15th, 2024

Introduction: Jets in ATLAS

Jets in ATLAS

- ▶ Proton collisions result in high-energy particles which pass through detector
	- ‣ Jets: Collimated sprays of particles initiated by quarks and gluons
- ▶ ATLAS jets built from EM-scale calorimeter energy deposits and tracking information
	- \blacktriangleright Using anti- $k^{}_{t}$ jet algorithm with $R=0.4$ for small-R (1.0 for large-R) jets
- ▶ End result: object representing best reconstruction of detected parton's energy and direction

[1]: [Jet energy calibration at the LHC](https://arxiv.org/abs/1509.05459)

4

[1]: **[Jet energy calibration at the LHC](https://arxiv.org/abs/1509.05459)**

The Machine Learning Approach

Why Machine Learning?

- ‣ Current calibration costly in both time and effort
	- \rightarrow ~1 year per full calibration
- ▶ Pile-up correction results in artifacts which must be corrected
- ‣ ML approach to GSC and large-R jets already successful
- ‣ **Goal:** Motivate and implement a ML network for small-R pile-up and JES calibrations in the HL-LHC

Why Machine Learning?

- ‣ Current calibration costly in both time and effort
	- \rightarrow ~1 year per full calibration
- ▶ Pile-up correction results in artifacts which must be corrected
- ‣ ML approach to GSC and large-R jets already successful
- ‣ **Goal:** Motivate and implement a ML network for small-R pile-up and JES calibrations in the HL-LHC

Jet Energy Ratios

Why Machine Learning?

- ‣ Current calibration costly in both time and effort
	- \rightarrow ~1 year per full calibration
- ▶ Pile-up correction results in artifacts which must be corrected
- ‣ ML approach to GSC and large-R jets already successful
- ‣ **Goal:** Motivate and implement a ML network for small-R pile-up and JES calibrations in the HL-LHC

Network Parameters

- \triangleright Using MC EMTopo jets with $|\eta| \leq 4.5$
	- \rightarrow ~ 5 million jets
- ▶ Use mean absolute error (MAE) loss function

Using MC EMTopo jets with
$$
|\eta| \leq 4.5
$$

\n▶ ~ 5 million jets

\nUse mean absolute error (MAE) loss function

\n▶ $\mathcal{L} = \frac{1}{n} \sum_{n=1}^{i=1} |y_{i,pred} - y_{i, true}|$

\n▶ Target distribution median

\n▶ Avoid sensitivity to outliers

\n▶ Similar target to Large-R network

- ▶ Target distribution median
- ▶ Avoid sensitivity to outliers
-

```
# Build TF model
NEPOCHS = 40BATCH SIZE = 4096
LR = 0.01
```

```
# Define normalization layer
norm layer = layers. Normalization()
norm_layer.adapt(X_train)
```

```
# Define layers/node count
jet_model = tf.keras. Sequential(norm layer,
 layers.Dense(32, activation='relu'),
  layers.Dense(32, activation='relu'),
  layers.Dense(64, activation='relu'),
  layers.Dense(64, activation='relu'),
 layers.Dense(128, activation='relu'),
 layers.Dense(256, activation='relu'),
 layers.Dense(128, activation='relu'),
  layers.Dense(64, activation='relu'),
  layers.Dense(64, activation='relu'),
  layers.Dense(32, activation='relu'),
  layers.Dense(32, activation='relu'),
  layers. Dense(1, activation='relu')
\left| \right|
```
Compile

 $jet_{model.compile}(loss = tf.keras.losses.MeanAbsoluteError(), optimizer = tf.keras.$

Add callbacks

reduce_lr = tf.keras.callbacks.ReduceLROnPlateau(monitor='val_loss', factor=0.1, pa

Train

history = jet_model.fit(X_train, (y_train['pseudo_RT']), epochs=NEPOCHS, batch_size

Network Parameters

‣ Motivate simplest possible DNN to perform calibration

 \blacktriangleright MAE Loss function: $\mathcal{L}(y_{true}, y_{pred}) =$ 1 *n n* ∑ *i*=1 $y_{i,true}(\theta) - y_{i,pred}(\theta)$

Current Results

Calibration Performance - Energy Ratios

Pre vs Post-Calibration Energy Ratios

Calibration Performance - Energy Ratios

‣ Network can shift mean/median response and accomplish nominal task

Jet Energy Scale - $E_{Constit}$ *v.* E_{Cal} (*η* Bins)

Jet Energy Scale - $E_{Constit}$ v. E_{Cal} in η (*E* Bins)

Jet Energy Resolution - $E_{Constit}$ v. E_{Cal} (η Bins)

IRU Penn 17

Future Studies and Considerations

Loss Function Extensions

- ▶ Several groups exploring Mixture Density Networks (MDNs)[\[APS](https://apsapp.bravuratechnologies.com/APS-WEB/?id=33600025#!/login)]
- \blacktriangleright Fit K Gaussians to input distribution
	- **Exercise A** Return amplitude, μ , σ for each
- ‣ Effectively generate PDF for possible corrections

PFlow Jets

- ‣ Associate inner tracker information with EMTopo clusters forming each jet
- \blacktriangleright Improves low- p_T jet resolution, reconstruction efficiency
	- ▶ Combats pile-up instability

Questions?

Backup

Overview

- ‣ Overall: Develop ML-based MCJES calibration for upcoming R24 HL-LHC MC samples
	- **Initially built on Run 3 framework developed by Kevin** Greif in coordination with Chris Pollard & Jennifer Roloff [\[1\]](https://gitlab.cern.ch/atlas-jetetmiss/definitions/ml-jetcalib%5D)
- ‣ Develop/cross-check new ML calibration performance against existing 21.9 EMTopo jet calibration
	- ‣ Use same inputs & evaluate performance against Jingjing Pan's R21.9 EMTopo jet calibration (residual pileup + MCJES corrections)[\[2\]](https://its.cern.ch/jira/browse/ATLJETMET-1273)
- ‣ Network output: set of calibrated weights which generate all-in-one scalar jet correction *R*(*Xreco*, *θ*)

Current jet calibration Stage I: Pileup Correction

$$
p_{corr} = p_{reco} - \rho \times A - \alpha \times (N_{PV} - 1) - \beta \times \mu
$$

Stage II: JES Correction
\n
$$
E_{corr} = \mathcal{R}(E_{reco}) * E_{reco} \approx \mathcal{R}\left(N(E^{reco}/E^{true})\right) * E_{reco}
$$
\nStage II: GSC Correction

$$
E_{corr} = \mathcal{R}(f_{charged}, f_{Tile0}, w_{trk}...)*E_{reco}
$$

ML-based calibration

Stage I: Train

$$
R(X_{reco}, \theta) = \left(\frac{X_{reco}}{X_{true}}\right) * f(\theta)
$$

Stage II: Calibrate

$$
X_{calib} = \frac{1}{R} X_{Reco} = \frac{X_{true}}{X_{reco}} X_{reco} \approx X_{true}
$$

What is a jet?

- \rightarrow Jet = closest physics object to original parton
	- \triangleright Offer multiplicity, p_T , and substructure signatures
- ‣ Defined by **parameter(s)** and **recombination scheme**
- ▶ Must nominally meet Snowmass Conditions
	- ‣ "Simple" to use in theory/experiment
	- ‣ Yields finite, hadronization-insensitive *σ*
- ▶ Definition choice heavily dependent on use-case
	- ▶ "No single optimal way of defining jets"
- ▶ Upcoming R3/HL-LHC demand high performance across various aspects
	- ‣ Energy resolution, pileup correction, readout time…
- ▶ "...no single jet definition will work optimally for the whole range of LHC phenomena"

Sequential Recombination (Anti-*k*_t)

▶ Bottom-up jet construction

- ▶ Build jets on shared metric, not from singular seed
- ‣ Assign clustering sequence to jet substructure

\triangleright For set of particles $\{n\}$:

- \blacktriangleright Find all distance measures d_{ij}
- \blacktriangleright Locate pair $\{i, j\}$ corresponding to min $\{d_{ij}\}$
- \blacktriangleright IF($d_{iB} = d_{min}$): Declare *i* final-state jet and repeat
- ELIF($d_{min} > d_{cut}$): merge $\{i, j\}$ into single protojet
- ▶ If particles remain: repeat procedure
- ‣ ELSE: Assign all remaining objects to be jets and terminate
- ‣ Jets built out around harder seeds
- \blacktriangleright Fully inclusive, relatively fast [$\mathcal{O}(N\sqrt{n})$], and **IRCsafe**

Sequential Recombination (Anti-*k*_t)

▶ Bottom-up jet construction

- ▶ Build jets on shared metric, not from singular seed
- ‣ Assign clustering sequence to jet substructure
- \triangleright For set of particles $\{n\}$:
	- \blacktriangleright Find all distance measures d_{ij}
	- \blacktriangleright Locate pair $\{i, j\}$ corresponding to min $\{d_{ij}\}$
	- \blacktriangleright IF($d_{iB} = d_{min}$): Declare *i* final-state jet and repeat
	- ELIF($d_{min} > d_{cut}$): merge $\{i, j\}$ into single protojet
	- ▶ If particles remain: repeat procedure
	- ‣ ELSE: Assign all remaining objects to be jets and terminate
- ‣ Jets built out around harder seeds
- \blacktriangleright Fully inclusive, relatively fast [$\mathcal{O}(N\sqrt{n})$], and **IRCsafe**

‣ Through Run 2: **EMTopo** Jets

- ‣ Massless clustering of calorimeter cells (topo-clusters)
- ▶ Cut on deposited energy/noise ratio with vertex correction

‣ Moving forward: **Particle Flow** (PFlow) Jets

- ‣ Combine calorimeter towers with tracking data
	- \blacktriangleright Link EMTopo cluster to low- p_T tracks
	- \blacktriangleright Remove EMTopo energy/replace with particle p_T
	- ▶ Leave remnant EMTopo clusters + hard tracks
- \triangleright Better resolution (E, ϕ) , pileup stability, reco. Efficiency
	- \triangleright Better captures low- p_T regime (< 40 GeV)
- \blacktriangleright Jet inputs passed to anti $-k_t$ algorithm with $R = 0.4$ $(1.0$ for fat jets)

‣ Through Run 2: **EMTopo** Jets

- ‣ Massless clustering of calorimeter cells (topo-clusters)
- ▶ Cut on deposited energy/noise ratio with vertex correction

‣ Moving forward: **Particle Flow** (PFlow) Jets

- ‣ Combine calorimeter towers with tracking data
	- \blacktriangleright Link EMTopo cluster to low- p_T tracks
	- \blacktriangleright Remove EMTopo energy/replace with particle p_T
	- ▶ Leave remnant EMTopo clusters + hard tracks
- \triangleright Better resolution (E, ϕ) , pileup stability, reco. Efficiency
	- \triangleright Better captures low- p_T regime (< 40 GeV)
- \blacktriangleright Jet inputs passed to anti $-k_t$ algorithm with $R = 0.4$ $(1.0$ for fat jets)

‣ Through Run 2: **EMTopo** Jets

- ‣ Massless clustering of calorimeter cells (topo-clusters)
- ▶ Cut on deposited energy/noise ratio with vertex correction

‣ Moving forward: **Particle Flow** (PFlow) Jets

- ‣ Combine calorimeter towers with tracking data
	- \triangleright Link EMTopo cluster to low- p_T tracks
	- \blacktriangleright Remove EMTopo energy/replace with particle p_T
	- ▶ Leave remnant EMTopo clusters + hard tracks
- \triangleright Better resolution (E, ϕ) , pileup stability, reco. Efficiency
	- \triangleright Better captures low- p_T regime (< 40 GeV)
- \blacktriangleright Jet inputs passed to anti $-k_t$ algorithm with $R = 0.4$ $(1.0$ for fat jets)

‣ Through Run 2: **EMTopo** Jets

- ‣ Massless clustering of calorimeter cells (topo-clusters)
- ▶ Cut on deposited energy/noise ratio with vertex correction
- ‣ Moving forward: **Particle Flow** (PFlow) Jets
	- ‣ Combine calorimeter towers with tracking data
		- \blacktriangleright Link EMTopo cluster to low- p_T tracks
		- \blacktriangleright Remove EMTopo energy/replace with particle p_T
		- ▶ Leave remnant EMTopo clusters + hard tracks
	- \triangleright Better resolution (E, ϕ) , pileup stability, reco. Efficiency
		- \triangleright Better captures low- p_T regime (< 40 GeV)
- \blacktriangleright Jet inputs passed to anti $-k_t$ algorithm with $R = 0.4$ $(1.0$ for fat jets)

Residual Pileup Correction

- ▶ First (central, low-occupancy) correction: reduce added p_T due to pileup using k_T -based density measure
	- ▶ Determine passive jet area a using "ghosts"

\n- *p_T* due to pileup using *k_T*-based density measure
\n- Determine passive jet area *a* using "ghosts"
\n- Calculate *p_T* density *ρ* =
$$
\langle \frac{p_T}{A} \rangle
$$
 in *y* − *φ* with $|\eta| < 2$
\n- Best measure of soft pileup background
\n- Scale jet ($\overrightarrow{E}, \overrightarrow{p}$) by *ρ*-subtracted *p_T* to original *p_T* ratio
\n- Second (forward, high-occupancy) correction: match
\n- *p_{T, reco}* to *p_{T,truth}*
\n- Function of *N_{PV}* and *μ*
\n- Final correction given by
\n- *p_{corr}* = *p_{reco}* − *ρ* × *A* − *α* × (*N_{PV}* − 1) − *β* × *μ*
\n- Fit in bins of $|\eta_{det}|\$
\n

- ▶ Best measure of soft pileup background
- \blacktriangleright Scale jet (E, \vec{p}) by ρ -subtracted p_T to original p_T ratio ,
,
,
- ▶ Second (forward, high-occupancy) correction: match

 $p_{T, reco}$ to $p_{T,truth}$

- *T,reco* ^{**ιο** PT ,truth
► Function of N_{PV} and $μ$}
- ▶ Final correction given by

$$
p_{corr} = p_{reco} - \rho \times A - \alpha \times (N_{PV} - 1) - \beta \times \mu
$$

 $|\eta_{det}|$

MCJES/*η* Correction

- ‣ Jet Energy Scale (JES) accounts energy loss within the detector
	- ▶ Match truth jets to isolated reco. Jets within $\Delta R = 0.3$
	- \blacktriangleright Define jet energy response $\mathscr R$ as mean of *N*(*Ereco* /*Etrue*)
	- ▶ Numerically invert distribution to find $\mathcal{R}(E^{reco})$
	- ▶ Scale jet four-momentum accordingly
- **▶** *η* correction accounts for calorimeter edges/energy responses
	- ‣ Similar methodology
	- Only alters \vec{p} and η measurements, not four-vector

Global Sequential Calibration

- ‣ Accounts for remaining jet physics which bias detector response
	- ‣ Quark vs. gluon jets: hard hadron signals vs. soft, transverse profile
	- ‣ Quark flavor/energy distribution bias reconstruction as well
- Goal: improve jet resolution $[\sigma_{\mathcal{R}} \leftarrow N(p_T^{reco} / p_T^{true})]$ while maintaining JER b Goal: improve jet resolution $[\sigma_{\mathcal{R}} \leftarrow N(p_T^{reco} / p_T^{true})]$

while maintaining JER

b Six independent scaling parameters derived for:

b $f_{charged} = \{p_T > 500M, |\eta_{det}| < 2.5\}$

b $f_{file0} = \{\text{first tile layer}, |\eta_{det}| < 1.7\}$

b $f_{LAr3} = \{\text{third LAr layer},$
- ▶ Six independent scaling parameters derived for:
	-
	-
	- → $f_{charged} = {p_T > 500M, |\eta_{det}| < 2.5}$

	→ $f_{Tile0} = {first tile layer, |\eta_{det}| < 1.7}$

	→ $f_{LAr3} = {third LAr layer, |\eta_{det}| < 3.5}$

	→ $n_{trk} = #$ of associated 1-GeV tracks
	-
	- \rightarrow W_{trk} = average transverse distance between jet axis and all associated 1-GeV tracks
	- \rightarrow n_{see} = # of associated muon track segments
-

Looking Forward: HL-LHC

• Main challenge: pileup up to $<\mu>$ = 200

- \blacktriangleright Dominant systematic for low- p_T (< 40 GeV) jets
- ▶ Few studies on anticipated HL-LHC jet resolution

▶ Understanding upgraded detector effects

- ▶ Improved calorimeter resolution
	- ‣ More localized energy deposits = better EMTopo clusters
- ▶ Improved forward region tracking
- Improved timing w/ HGTD
- 1 MHz triggering
- ‣ Overall: need to simulate and understand jet performance under HL-LHC conditions

Current Dijet Samples

▶ R21.9

‣ mc15_14TeV.800292.Py8EG_A14NNPDF23LO_jetjet_JZ2**WithSW**.recon.AOD.e8185_s3770_s3773_r13619

‣ R23

‣ mc21_14TeV.801165.Py8EG_A14NNPDF23LO_jj_JZ0.deriv.DAOD_PHYSVAL.e8481_s4038_r14362_p5608

Leading Jet p_T Distributions - Truth + Constit

HAJH Penn

31

Leading Jet p_T Distributions - Pileup + JES

All JZ slices for LJ in branch jet_JESPt Count $10⁹$ $-JZ1$ $-JZ2$ $-JZ0$ Count 10^8 $-JZ4$ $-JZ5$ $-JZ3$ 10 $-JZ1$ $-JZ2$ $-JZ0$ 10 $JZ7$ $JZ8$ 10 $JZ6$ $-JZ5$ $-JZ4$ $-JZ3$ 10° 10 \blacksquare JZ7 $-JZ8$ $JZ6$ 10^5 10° *Slight Excess (180-190 GeV)* 10° $10⁴$ *Slight Excess (180-190 GeV)* $10⁴$ 10^3 10^{3} 10^2 $10²$ 10 10 1 10^{-1} 10^{-} 10^{-2} 10^{-2} 10^{-3} 10^{-3} 10^{-4} 10^{-4} 10^{-5} 10^{-5} 10^{-6} 10^{-6} $10²$ 10^3 10^{3} $10²$ p_T (GeV)

All JZ slices for LJ in branch jet_PileupPt

p_T (GeV)

Calibrated v. True Energy

- ▶ ~100 GeV spread in calibrated energy for given truth value
- ▶ Exacerbated in pileup region

33

HASH

Penn

 $10⁴$

 $10³$

 $10²$

 10^1

 $10⁰$

 $E-\rho\cdot A$ Distribution

- ▶ Confirm similar low-E distribution within 21.9 samples
	- ▶ Not a network feature
- ‣ Network unable to pull out constituent calibration when inherent to distribution
- ▶ Reinforces this is a sample issue, needs to be addressed for further attempts at ML calibration

Penn

Jet Energy Scale - $E_{Constit}$ v. E_{Cal} - 0 to 500 GeV

Jet Energy Scale - $E_{Constit}$ ν. E_{Cal} (η Bins) - 0 to 500 GeV

IRVII 36

- ▶ Evaluate possible loss functions starting from mean square error
	- ‣ Goal: motivate the simplest possible network structure without compromising on performance
- ‣ Default TF options do well but still lacking
- \triangleright End up back where we started at a Mixture Density Network (MDN)
	- ▶ Simpler this time!
- ▶ Still developing optimal implementation
	- \rightarrow 4.9M jets \sim 1 hour training, currently

Jet truth (black) and predicted (yellow) energy values using the RMSLE loss function

- ▶ Evaluate possible loss functions starting from mean square error
	- ▶ Goal: motivate the simplest possible network structure without compromising on performance
- ▶ Default TF options do well but still lacking
- \triangleright End up back where we started at a Mixture Density Network (MDN)
	- ‣ Simpler this time!
- ▶ Still developing optimal implementation
	- ▶ 4.9M jets \sim 1 hour training, currently

- ▶ Evaluate possible loss functions starting from mean square error
	- ‣ Goal: motivate the simplest possible network structure without compromising on performance
- ▶ Default TF options do well but still lacking
- \triangleright End up back where we started at a Mixture Density Network (MDN)
	- ▶ Simpler this time!
- ▶ Still developing optimal implementation
	- ▶ 4.9M jets \sim 1 hour training, currently

Multimodal Energy Distribution

- ▶ Evaluate possible loss functions starting from mean square error
	- ‣ Goal: motivate the simplest possible network structure without compromising on performance

Count

- ▶ Default TF options do well but still lacking
- \triangleright End up back where we started at a Mixture Density Network (MDN)
	- ▶ Simpler this time!
- ▶ Still developing optimal implementation
	-

Multimodal Energy Distribution $K = 3$ 100 80 60 40 20 0 200 400 1200 600 800 1000 \cap 1400 Energy (GeV) *K*−1 ▶ 4.9M jets ~ 1 hour training, currently $P(Y = y | X = x) =$ $\sum \prod_k(x)\phi(y, \mu_k(x), \sigma_k(x))$ *k*=0

- ▶ Evaluate possible loss functions starting from mean square error
	- ‣ Goal: motivate the simplest possible network structure without compromising on performance
- ▶ Default TF options do well but still lacking
- \triangleright End up back where we started at a Mixture Density Network (MDN)
	- ▶ Simpler this time!
- ▶ Still developing optimal implementation
	-

- ▶ Evaluate possible loss functions starting from mean square error
	- ‣ Goal: motivate the simplest possible network structure without compromising on performance
- ▶ Default TF options do well but still lacking
- \triangleright End up back where we started at a Mixture Density Network (MDN)
	- ▶ Simpler this time!
- ▶ Still developing optimal implementation
	- ▶ 4.9M jets \sim 1 hour training, currently

- ▶ Evaluate possible loss functions starting from mean square error
	- ‣ Goal: motivate the simplest possible network structure without compromising on performance
- ▶ Default TF options do well but still lacking
- \triangleright End up back where we started at a Mixture Density Network (MDN)
	- ▶ Simpler this time!
- ▶ Still developing optimal implementation
	- \rightarrow 4.9M jets \sim 1 hour training, currently

