

Jet Calibration in ATLAS Using Machine Learning

Benji Lunday (University of Pennsylvania)

May 15th, 2024

Introduction: Jets in ATLAS

Jets in ATLAS

- Proton collisions result in high-energy particles which pass through detector
 - Jets: Collimated sprays of particles initiated by quarks and gluons
- ATLAS jets built from EM-scale calorimeter energy deposits and tracking information
 - Using anti- k_t jet algorithm with R = 0.4 for small-R (1.0 for large-R) jets
- End result: object representing best reconstruction of detected parton's energy and direction

[1]: Jet energy calibration at the LHC

[1]: Jet energy calibration at the LHC

[1]: Jet energy calibration at the LHC

The Machine Learning Approach

Why Machine Learning?

- Current calibration costly in both time and effort
 - ~1 year per full calibration
- Pile-up correction results in artifacts which must be corrected
- ML approach to GSC and large-R jets already successful
- Goal: Motivate and implement a ML network for small-R pile-up and JES calibrations in the HL-LHC

Why Machine Learning?

- Current calibration costly in both time and effort
 - ~1 year per full calibration
- Pile-up correction results in artifacts which must be corrected
- ML approach to GSC and large-R jets already successful
- Goal: Motivate and implement a ML network for small-R pile-up and JES calibrations in the HL-LHC

Jet Energy Ratios

Why Machine Learning?

- Current calibration costly in both time and effort
 - ~1 year per full calibration
- Pile-up correction results in artifacts which must be corrected
- ML approach to GSC and large-R jets already successful
- Goal: Motivate and implement a ML network for small-R pile-up and JES calibrations in the HL-LHC

[2]: Simultaneous energy and mass calibration of large-radius jets with the ATLAS detector using a deep neural network

Network Parameters

- Using MC EMTopo jets with $|\eta| \le 4.5$
 - ➤ 5 million jets
- Use mean absolute error (MAE) loss function

$$\mathscr{L} = \frac{1}{n} \sum_{n}^{i=1} \left| y_{i,pred} - y_{i,true} \right|$$

- Target distribution median
- Avoid sensitivity to outliers
- Similar target to Large-R network

```
# Build TF model
NEPOCHS = 40
BATCH_SIZE = 4096
LR = 0.01
```

```
# Define normalization layer
norm_layer = layers.Normalization()
norm_layer.adapt(X_train)
```

```
# Define lavers/node count
jet_model = tf.keras.Sequential([
 norm_layer,
  layers.Dense(32, activation='relu'),
  layers.Dense(32, activation='relu'),
  layers.Dense(64, activation='relu'),
  layers.Dense(64, activation='relu'),
  layers.Dense(128, activation='relu'),
  layers.Dense(256, activation='relu'),
 layers.Dense(128, activation='relu'),
  layers.Dense(64, activation='relu'),
  layers.Dense(64, activation='relu'),
  layers.Dense(32, activation='relu'),
  layers.Dense(32, activation='relu'),
  layers.Dense(1, activation='relu')
1)
```

Compile

jet_model.compile(loss = tf.keras.losses.MeanAbsoluteError(), optimizer = tf.keras.

Add callbacks

reduce_lr = tf.keras.callbacks.ReduceLROnPlateau(monitor='val_loss', factor=0.1, pa

Train

history = jet_model.fit(X_train, (y_train['pseudo_RT']), epochs=NEPOCHS, batch_size

Network Parameters

Motivate simplest possible DNN to perform calibration

MAE Loss function: $\mathscr{L}(y_{true}, y_{pred}) = \frac{1}{n} \sum_{i=1}^{n} y_{i,true}(\theta) - y_{i,pred}(\theta)$

Current Results

Calibration Performance - Energy Ratios

Pre vs Post-Calibration Energy Ratios

Calibration Performance - Energy Ratios

▶ Network can shift mean/median response and accomplish nominal task

Penn **ATLAS** 14

Jet Energy Scale - $E_{Constit}$ v. E_{Cal} (η Bins)

Jet Energy Scale - $E_{Constit}$ v. E_{Cal} in η (*E* Bins)

Jet Energy Resolution - $E_{Constit}$ v. E_{Cal} (η Bins)

Penn **ATLAS** 17

Future Studies and Considerations

Loss Function Extensions

- Several groups exploring Mixture Density Networks (MDNs)^[APS]
- ▶ Fit *K* Gaussians to input distribution
 - Return amplitude, μ, σ for each
- Effectively generate PDF for possible corrections

PFlow Jets

- Associate inner tracker information with EMTopo clusters forming each jet
- Improves low- p_T jet resolution, reconstruction efficiency
 - Combats pile-up instability

Questions?

Backup

Overview

- Overall: Develop ML-based MCJES calibration for upcoming R24 HL-LHC MC samples
 Initially built on Run 3 framework developed by Kevin
 - Initially built on Run 3 framework developed by Kevin Greif in coordination with Chris Pollard & Jennifer Roloff [1]
- Develop/cross-check new ML calibration performance against existing 21.9 EMTopo jet calibration
 - Use same inputs & evaluate performance against Jingjing Pan's R21.9 EMTopo jet calibration (residual pileup + MCJES corrections)^[2]
- Network output: set of calibrated weights which generate all-in-one scalar jet correction $R(X_{reco}, \theta)$

Current jet calibration Stage I: Pileup Correction

$$p_{corr} = p_{reco} - \rho \times A - \alpha \times (N_{PV} - 1) - \beta \times \mu$$

Stage II: JES Correction

$$E_{corr} = \mathscr{R}(E_{reco}) * E_{reco} \approx \mathscr{R}\left(N\left(E^{reco}/E^{true}\right)\right) * E_{reco}$$

Stage II: GSC Correction

$$E_{corr} = \mathscr{R}(f_{charged}, f_{Tile0}, w_{trk}...) * E_{reco}$$

ML-based calibration

Stogo I: Train

Stage I. Half

$$R(X_{reco}, \theta) = \left(\frac{X_{reco}}{X_{true}}\right) * f(\theta)$$

Stage II: Calibrate

$$X_{calib} = \frac{1}{R} X_{Reco} = \frac{X_{true}}{X_{reco}} X_{reco} \approx X_{true}$$

What is a jet?

- Jet = closest physics object to original parton
 - Offer multiplicity, p_T , and substructure signatures
- Defined by parameter(s) and recombination scheme
- Must nominally meet Snowmass Conditions
 - "Simple" to use in theory/experiment
 - \blacktriangleright Yields finite, hadronization-insensitive σ
- Definition choice heavily dependent on use-case
 - "No single optimal way of defining jets"
- Upcoming R3/HL-LHC demand high performance across various aspects
 - Energy resolution, pileup correction, readout time...
- "…no single jet definition will work optimally for the whole range of LHC phenomena"

Sequential Recombination (Anti $-k_t$)

- Bottom-up jet construction
 - Build jets on shared metric, not from singular seed
 - Assign clustering sequence to jet substructure
- ▶ For set of particles {*n*}:
 - Find all distance measures d_{ij}
 - Locate pair $\{i, j\}$ corresponding to min $\{d_{ij}\}$
 - $IF(d_{iB} = d_{min})$: Declare *i* final-state jet and repeat
 - ELIF($d_{min} > d_{cut}$): merge $\{i, j\}$ into single protojet
 - If particles remain: repeat procedure
 - ELSE: Assign all remaining objects to be jets and terminate
- Jets built out around harder seeds
- Fully inclusive, relatively fast [$\mathcal{O}(N\sqrt{n})$], and IRC-safe

Sequential Recombination (Anti $-k_t$)

Bottom-up jet construction

- Build jets on shared metric, not from singular seed
- Assign clustering sequence to jet substructure
- ▶ For set of particles {*n*}:
 - Find all distance measures d_{ij}
 - Locate pair $\{i, j\}$ corresponding to min $\{d_{ij}\}$
 - $IF(d_{iB} = d_{min})$: Declare *i* final-state jet and repeat
 - ELIF($d_{min} > d_{cut}$): merge $\{i, j\}$ into single protojet
 - If particles remain: repeat procedure
 - ELSE: Assign all remaining objects to be jets and terminate
- Jets built out around harder seeds
- Fully inclusive, relatively fast [$\mathcal{O}(N\sqrt{n})$], and IRC-safe

- Massless clustering of calorimeter cells (topo-clusters)
- Cut on deposited energy/noise ratio with vertex correction
- Moving forward: Particle Flow (PFlow) Jets
 - Combine calorimeter towers with tracking data
 - Link EMTopo cluster to low- p_T tracks
 - For the Remove EMTopo energy/replace with particle p_T
 - Leave remnant EMTopo clusters + hard tracks
 - Better resolution (E, ϕ), pileup stability, reco. Efficiency
 - Better captures low- p_T regime (< 40 GeV)
- > Jet inputs passed to anti $-k_t$ algorithm with R = 0.4 (1.0 for fat jets)

- Massless clustering of calorimeter cells (topo-clusters)
- Cut on deposited energy/noise ratio with vertex correction
- Moving forward: Particle Flow (PFlow) Jets
 - Combine calorimeter towers with tracking data
 - Link EMTopo cluster to low- p_T tracks
 - For the Remove EMTopo energy/replace with particle p_T
 - Leave remnant EMTopo clusters + hard tracks
 - Better resolution (E, ϕ), pileup stability, reco. Efficiency
 - Better captures low- p_T regime (< 40 GeV)
- > Jet inputs passed to anti $-k_t$ algorithm with R = 0.4 (1.0 for fat jets)

- Massless clustering of calorimeter cells (topo-clusters)
- Cut on deposited energy/noise ratio with vertex correction
- Moving forward: Particle Flow (PFlow) Jets
 - Combine calorimeter towers with tracking data
 - Link EMTopo cluster to low- p_T tracks
 - For the Remove EMTopo energy/replace with particle p_T
 - Leave remnant EMTopo clusters + hard tracks
 - Better resolution (E, ϕ), pileup stability, reco. Efficiency
 - Better captures low- p_T regime (< 40 GeV)
- > Jet inputs passed to anti $-k_t$ algorithm with R = 0.4 (1.0 for fat jets)

- Massless clustering of calorimeter cells (topo-clusters)
- Cut on deposited energy/noise ratio with vertex correction
- Moving forward: Particle Flow (PFlow) Jets
 - Combine calorimeter towers with tracking data
 - Link EMTopo cluster to low- p_T tracks
 - Remove EMTopo energy/replace with particle p_T
 - Leave remnant EMTopo clusters + hard tracks
 - Better resolution (E, ϕ), pileup stability, reco. Efficiency
 - Better captures low- p_T regime (< 40 GeV)
- > Jet inputs passed to anti $-k_t$ algorithm with R = 0.4 (1.0 for fat jets)

Residual Pileup Correction

- First (central, low-occupancy) correction: reduce added p_T due to pileup using k_T -based density measure
 - Determine passive jet area a using "ghosts"

Calculate
$$p_T$$
 density $\rho = \left\langle \frac{p_T}{A} \right\rangle$ in $y - \phi$ with $|\eta| < 2$

- Best measure of soft pileup background
- Scale jet (\vec{E}, \vec{p}) by ρ -subtracted p_T to original p_T ratio
- Second (forward, high-occupancy) correction: match

 $p_{T,reco}$ to $p_{T,truth}$

- Function of N_{PV} and μ
- Final correction given by

$$p_{corr} = p_{reco} - \rho \times A - \alpha \times (N_{PV} - 1) - \beta \times \mu$$

Fit in bins of $|\eta_{det}|$

MCJES/ η Correction

- Jet Energy Scale (JES) accounts energy loss within the detector
 - Match truth jets to isolated reco. Jets within $\Delta R = 0.3$
 - Define jet energy response \mathscr{R} as mean of $N(E^{reco}/E^{true})$
 - Numerically invert distribution to find $\mathscr{R}(E^{reco})$
 - Scale jet four-momentum accordingly
- η correction accounts for calorimeter edges/energy responses
 - Similar methodology
 - \blacktriangleright Only alters \vec{p} and η measurements, not four-vector

Global Sequential Calibration

- Accounts for remaining jet physics which bias detector response
 - Quark vs. gluon jets: hard hadron signals vs. soft, transverse profile
 - Quark flavor/energy distribution bias reconstruction as well
 - ▶ Goal: improve jet resolution $[\sigma_{\mathcal{R}} \leftarrow N(p_T^{reco} / p_T^{true})]$ while maintaining JER
- Six independent scaling parameters derived for:
 - $f_{charged} = \{ p_T > 500M, |\eta_{det}| < 2.5 \}$
 - $f_{Tile0} = \{$ first tile layer, $|\eta_{det}| < 1.7 \}$
 - $f_{LAr3} = \{$ third LAr layer, $|\eta_{det}| < 3.5 \}$
 - n_{trk} = # of associated 1-GeV tracks
 - *w*_{trk} = average transverse distance between jet axis and all associated 1-GeV tracks
 - n_{seg} = # of associated muon track segments
- Derivation follows MCJES inversion-based procedure

Looking Forward: HL-LHC

- Main challenge: pileup up to $<\mu>=200$
 - Dominant systematic for low- p_T (< 40 GeV) jets
 - Few studies on anticipated HL-LHC jet resolution
- Understanding upgraded detector effects
 - Improved calorimeter resolution
 - More localized energy deposits = better EMTopo clusters
 - Improved forward region tracking
 - Improved timing w/ HGTD
 - 1 MHz triggering
- Overall: need to simulate and understand jet performance under HL-LHC conditions

Current Dijet Samples

▶ R21.9

mc15_14TeV.800292.Py8EG_A14NNPDF23LO_jetjet_JZ2WithSW.recon.AOD.e8185_s3770_s3773_r13619

• R23

mc21_14TeV.801165.Py8EG_A14NNPDF23LO_jj_JZ0.deriv.DAOD_PHYSVAL.e8481_s4038_r14362_p5608

Leading Jet p_T Distributions - Truth + Constit

All JZ slices for LJ in branch jet_ConstitPt

Leading Jet p_T Distributions - Pileup + JES

All JZ slices for LJ in branch jet_JESPt Count 10⁹ -JZ0 - JZ1 -JZ2 Count 10 JZ4 JZ5 JZ3 10 - JZ1 - JZ2 --- JZ0 10 JZ7 JZ8 JZ6 JZ5 JZ4 JZ3 10 10 JZ7 JZ8 JZ6 10⁵ 10 Slight Excess (180-190 GeV) 10 10⁴ Slight Excess (180-190 GeV) 10⁴ 10³ 10³ 10² 10² 10 10 10 10-10⁻² 10-2 10⁻³ 10-3 10-4 10-4 10⁻⁵ 10-5 10-6 10⁻⁶ 10² 10³ 10² 10³ p_T (GeV) p_T (GeV)

All JZ slices for LJ in branch jet_PileupPt

Calibrated v. True Energy

- ~100 GeV spread in calibrated energy for given truth value
- Exacerbated in pileup region

Penn **ATLAS**

33

10⁴

10³

10²

10¹

10⁰

 $E - \rho \cdot A$ Distribution

- Confirm similar low-E distribution within 21.9 samples
 - Not a network feature
- Network unable to pull out constituent calibration when inherent to distribution
- Reinforces this is a sample issue, needs to be addressed for further attempts at ML calibration

34

Penn

Jet Energy Scale - $E_{Constit}$ v. E_{Cal} - 0 to 500 GeV

Jet Energy Scale - $E_{Constit}$ v. E_{Cal} (η Bins) - 0 to 500 GeV

Penn **ATLAS** 36

- Evaluate possible loss functions starting from mean square error
 - Goal: motivate the simplest possible network structure without compromising on performance

Count

- Default TF options do well but still lacking
- End up back where we started at a Mixture Density Network (MDN)
 - Simpler this time!
- Still developing optimal implementation
 - ▶ 4.9M jets ~ 1 hour training, currently

Jet truth (black) and predicted (yellow) energy values using the RMSLE loss function

Pre vs. Post-Network Distributions - Jet Energy

- Evaluate possible loss functions starting from mean square error
 - Goal: motivate the simplest possible network structure without compromising on performance
- Default TF options do well but still lacking
- End up back where we started at a Mixture Density Network (MDN)
 - Simpler this time!
- Still developing optimal implementation
 - ▶ 4.9M jets ~ 1 hour training, currently

- Evaluate possible loss functions starting from mean square error
 - Goal: motivate the simplest possible network structure without compromising on performance
- Default TF options do well but still lacking
- End up back where we started at a Mixture Density Network (MDN)
 - Simpler this time!
- Still developing optimal implementation
 - ▶ 4.9M jets ~ 1 hour training, currently

Multimodal Energy Distribution

- Evaluate possible loss functions starting from mean square error
 - Goal: motivate the simplest possible network structure without compromising on performance

Count

- Default TF options do well but still lacking
- End up back where we started at a Mixture Density Network (MDN)
 - Simpler this time!
- Still developing optimal implementation
 - ▶ 4.9M jets ~ 1 hour training, currently

Multimodal Energy Distribution K = 3 100 80 60 40 20 0 200 400 1200 600 1000 800 1400 0 Energy (GeV) *K*-1 $P(Y = y \mid X = x) = \sum \prod_{k} (x)\phi(y, \mu_k(x), \sigma_k(x))$

- Evaluate possible loss functions starting from mean square error
 - Goal: motivate the simplest possible network structure without compromising on performance
- Default TF options do well but still lacking
- End up back where we started at a Mixture Density Network (MDN)
 - Simpler this time!
- Still developing optimal implementation
 - ▶ 4.9M jets ~ 1 hour training, currently

- Evaluate possible loss functions starting from mean square error
 - Goal: motivate the simplest possible network structure without compromising on performance
- Default TF options do well but still lacking
- End up back where we started at a Mixture Density Network (MDN)
 - Simpler this time!
- Still developing optimal implementation
 - ▶ 4.9M jets ~ 1 hour training, currently

- Evaluate possible loss functions starting from mean square error
 - Goal: motivate the simplest possible network structure without compromising on performance
- Default TF options do well but still lacking
- End up back where we started at a Mixture Density Network (MDN)
 - Simpler this time!
- Still developing optimal implementation
 - ▶ 4.9M jets ~ 1 hour training, currently

