

Anomalous Precession Frequency Analysis at Fermilab Muon g-2 Experiment

DPF-PHENO 2024 May 15 2024 Murong Cheng On behalf of the Muon g-2 collaboration

Muon g-2 Measurement Result

 $a\mu$ (FNAL; Run-2/3) = 0.00 116 592 057(25) [215 ppb] $a\mu$ (FNAL) = 0.00 116 592 055(24) [203 ppb] $a\mu$ (Exp) = 0.00 116 592 059(22) [190 ppb]

- Run-2/3 result is consistent with Run-1 and BNL
- Uncertainty reduced by more than x2 compared to Run-1

Muon g-2 Experiment at Fermilab

To measure the magnetic anomaly: $\omega_a = \omega_s - \omega_c = a_\mu \frac{eB}{m}$

Spin frequency: $\omega_s = -\frac{e}{\gamma m} B (1 + \gamma a_\mu)$ Cyclotron frequency: $\omega_c = -\frac{e}{\gamma m} B$

Highly polarized muon from $\pi^+ \rightarrow \mu^+ + \nu_{\mu}$

Inflector: creates an almost field-free region in the storage ring avoid muon deflected by magnetic field

Kicker: kick the muon beam to the central orbit by producing another magnetic field

Electrostatic quadrupole system: vertically focus muon beam

Tracker: measure beam oscillation

Calorimeter: measure time and energy of decayed positrons

 $\vec{B}(\bullet)$

Momentum

Measuring a_{μ}

To measure ω_a

Muon decay

- Parity violation
- Positron tends to be emitted along the changing spin direction
- As the muon spin points towards & away from calorimeters, the number of high energy positrons oscillates

ω_a analysis

- Threshold method:
 - Highest energy positrons contain highest signals
 - Apply an energy threshold cut
 - Fit all positrons with energies above the threshold

ω_a analysis

 $D \equiv N_+ + N_- - 2N$ (difference)

Energy Bin Center (Mev)

- **R**atio method:
 - Enhance the g-2 oscillation in the numerator and remove it in the denominator.

- Asymmetry-weighted method:
 - Energy-weighted version of Threshold method

Coherent Betatron Oscillation (CBO)

- Muons fail to stay in the perfect circular orbit, oscillate in radial direction
- $\omega_{CBO} = \omega_c \omega_x$ cyclotron frequency horizontal beam oscillation frequency
- $N_{CBO}(t) = 1 + A_{CBO} \cdot e^{-t/\tau_{CBO}} \cdot \cos(\omega_{CBO}t + \phi_{CBO})$

Muon loss

- Some muons are lost from the storage ring before they decay during the measurement window
- When passing through consecutive calorimeters, it has a characteristic energy of around 170 MeV and a characteristic time of flight of around 6.15 ns.

Combining CBO and ML, got 9-par fit function: $N(t)_{9-par} = N_0 \cdot e^{-\frac{t}{\tau_{\mu}}} [1 + A\cos(\omega_a + \phi_0)] \cdot \Lambda(t) \cdot N_{CBO}(t)$ Muon loss

ω_a analysis - Fit function

$$N(t) = N_0 e^{-t/\tau_{\mu}} [1 + A \cdot A_{cbo}(t) \cos(\omega_a t) - (\phi_0 + \phi_{cbo}(t))]$$
$$\cdot \Lambda(t) \cdot N_{cbo}(t) \cdot N_{2cbo}(t) \cdot N_{VW}(t) \cdot N_y(t) \cdot N_n(t)$$

$$\begin{split} \phi_{cbo}(t) &= A_{cbo-\phi}(e^{-t/\tau_{cbo}} + C_{cbo})\cos(\omega_{cbo}(t)t - \phi_{cbo-\phi}) \\ A_{cbo}(t) &= 1 + A_{cbo-A}(e^{-t/\tau_{cbo}} + C_{cbo})\cos(\omega_{cbo}(t)t - \phi_{cbo-A}) \\ N_{cbo}(t) &= 1 + A_{cbo}(e^{-t/\tau_{cbo}} + C_{cbo})\cos(\omega_{cbo}(t)t - \phi_{cbo}) \\ N_{2cbo}(t) &= 1 + A_{2cbo-N}(e^{-2t/\tau_{cbo}} + C_{cbo})\cos(2\omega_{cbo}(t)t - \phi_{2cbo-N}) \\ \omega_{cbo}(t)t &= \omega_{cbo}t + A_{d}e^{-t/\tau_{d}} \\ N_{VW}(t) &= 1 + A_{VW}e^{-t/\tau_{VW}}\cos(\omega_{VW}t - \phi_{VW}) \\ N_{y}(t) &= 1 + A_{y}e^{-t/\tau_{y}}\cos(\omega_{y}t - \phi_{y}) \\ N_{n}(t) &= 1 + A_{n}e^{-t/\tau_{n}}\cos(\omega_{n}t - \phi_{n}) \end{split}$$

Consistency checks

- Fit start time scans
- Positron energy binned scans
- Per calorimeters scans

Statistical and systematic uncertainties

- Comparing to Run-1, Run-2/3 statistical and systematic uncertainties are both reduced by factor of 2.2
- Statistical uncertainty dominates the error
- Run-4/5/6 aims to lead to another factor of 2 improvement in statistical precision and reduce the systematic uncertainties

CBO decoherence envelope study

- Perform sliding window fit and show how different models describe the CBO envelope
- Run-2/3: Estimate the R value shift to be used as uncertainty on the CBO decoherence envelope

Radio Frequency (RF) system

- Starting from Run-5, the RF system is employed
 - A harmonically varying horizontal dipole electric field is applied to the beam out of phase with the CBO.
 - Reduce CBO amplitude by factor of 5.
 - Also reduce muon loss by factor of 4.

CBO decoherence envelope study

- Perform sliding window fit and show how different models describe the CBO envelope
- Run-2/3: Estimate the R shift to be used as uncertainty on the CBO decoherence envelope
- CBO amplitude is much reduced in Run-5/6, the similar studies are being performed. Beam dynamics changed due to the RF system, so different CBO envelopes are under investigation.

Thanks for listening! Questions?

Acknowledgements

- Department of Energy (USA),
- National Science Foundation (USA),
- Istituto Nazionale di Fisica Nucleare (Italy),
- Science and Technology Facilities Council (UK),
- Royal Society (UK),
- Leverhulme Trust (UK),
- European Union's Horizon 2020,
- Strong 2020 (EU),
- German Research Foundation (DFG),
- National Natural Science Foundation of China,
- MSIP, NRF and IBS-R017-D1 (Republic of Korea)

Back-up

ω_a analysis – R-method

- Ratio method:
 - Decayed positron counts randomly divided into 4 histograms
 - Enhance the g-2 oscillation in the numerator and remove it in the denominator.

$$R(t) = \frac{N_{+}\left(t + \frac{T_{a}}{2}\right) + N_{-}\left(t - \frac{T_{a}}{2}\right) - 2N(t)}{N_{+}\left(t + \frac{T_{a}}{2}\right) + N_{-}\left(t - \frac{T_{a}}{2}\right) + 2N(t)}$$

• The ratio divides out the slow effects

ω_a analysis – A-method

- Asymmetry-weighted method:
 - Energy-weighted version of Threshold method
 - T-method w(E) = 1, E > 1750 MeV
 - A-method w(E) = A(E), 1050 MeV < E
 < 3050 MeV
 - Reduce the statistical uncertainty
- Asymmetry-weighted Ratio method:
 - Energy-weighted version of Ratio method

Energy Bin Center (Mev)

Muon loss

- Some muons are lost from the storage ring before they decay during the measurement window
- When passing through consecutive calorimeters, it has a characteristic energy of around 170 MeV and a characteristic time of flight of around 6.15 ns.

Combining CBO and ML, got 9-par fit function:

$$N(t)_{9-par} = N_0 \cdot e^{-\frac{t}{\tau_{\mu}}} [1 + A\cos(\omega_a + \phi_0)] \cdot \Lambda(t) \cdot N_{CBO}(t)$$

Muon loss correction

Cut criteria	Description	
Coincidence level $= 1$.	Exclude the singlets.	
Time $< 15 \ \mu s.$	Exclude the first 15 μ s after the injection.	
The number of hits in crystals ≥ 3 .	Exclude non-MIP-like events.	
he maximum crystal energy / cluster energy < 0.8 . Exclude non-MIP-like events.		
$\Delta t_{12,23} < 5$ ns or $\Delta t_{12,23} > 7.5$ ns	Coincidence time interval cuts.	
$\Delta t_{13} > 14.4 \text{ ns}$	Deuteron subtraction cut.	
Energy < 100 MeV or Energy > 250 MeV	MIP energy cuts.	

True rate of muon loss

 $\frac{\mathrm{d}N}{\mathrm{d}t} = -\frac{N}{\tau} - \frac{L(t)}{\epsilon}$ Proportionality constant, ε , characterizes the above method's efficiency of detecting the lost muons

$$N(t) = N(t_0) \cdot e^{-(t-t_0)/\tau} \cdot \left[1 - \frac{1}{N(t_0)\epsilon} \int_{t_0}^t L(t') \cdot e^{(t'-t_0)/\tau} \, \mathrm{d}t'\right]$$

Kloss

depends only on the initial number of stored muons and the detection efficiency of lost muons

Muon loss systematic study $\Lambda(t) = 1 - \kappa_{loss} \int_{0}^{t} dt' L(t') e^{t'/\tau_{\mu}}$

- Fixed κ_{loss}
 - R-method fit: τ_{μ} and κ_{loss} fixed to the values extracted from the T-method fit. This introduces uncertainty on the R-value for the R-method ω_a analysis.
 - Extract the R sensitivity for various κ_{loss} values and then multiply this sensitivity with the uncertainty on κ_{loss} from T-method fit results.
- Different muon loss models
 - Use the different Run-2/3 muon loss spectra from the Europa group, which have quadruple and quintuple coincidences besides triples.
 - Nominal fits were performed by using both IRMA and Europa's muon loss spectra

1-)Fixed Kloss Systematic

- Fix Kloss in R method (from T method)
- Scan over different Kloss value

Systematic Error due to fixed Kloss (seed 0)

	dR/dK	σ_k	δR [ppb]
Run2	-1.667	0.318	0.530
Run3A	-1.113	1.785	1.987
Run3B	-0.950	1.744	1.657

The sensitivity of R to the fixed Kloss value for Run2, Run3A, Run3B. (Seed 0)

Run2: Best-fit value of Kloss from T method is 3.0277, the corresponding R method fit result R is -67.469 ppm. Turn off Kloss value, R is -67.468 ppm. Difference is 1 ppb. Run3A: Best-fit value of Kloss from T method is -7.6387, the corresponding R method fit result R is -58.499 ppm. Turn off Kloss value, R is -58.507 ppm. Difference is -8 ppb. Run3B: Best-fit value of Kloss from T method is -5.0076, the corresponding R method fit result R is -57.206 ppm. Turn off Kloss value, R is -57.21 ppm. Difference is -5 ppb.

2-)Different Models Systematic

- · Kloss values are different by using two muon loss models
- R values are the same in Run2 dataset
- Small differences of R values in Run3A and Run3B

