Soft Unclustered Energy Patterns

via gluon-gluon fusion

Luca Lavezzo (MIT) on behalf of the CMS Collaboration

Hidden Valleys

Defining characteristics:

- + Confining, non-Abelian gauge group to extend SM
- + Coupling through a mediator
- + Multi-particle production process in the dark sector
- + Mass gap favors decay back to SM

Rich phenomenology of models! Several predictions for possible signatures at colliders:

- + Stable dark hadrons
 - MET+X Missing energy in the detector, golden standard of DM searches, heavily covered
 - Semivisible jets (<u>arXiv:2112.11125</u>) dark jets which partially decay back to the SM
- + Long lived particles
 - Emerging jets (<u>arXiv:2403.01556</u>) jets with large displaced vertices
- + Promptly decaying, large 't Hooft coupling
 - Soft unclustered energy patterns (SUEPs)

From <u>arXiv:0801.0629</u>

SUEPs

- + Quasi-conformal dark sector with 't Hooft coupling $\lambda \equiv g^2 N_{colors} \gg 1$
 - Dark mesons produced with mass scales smaller than mediator
 - Showering process is efficient over a larger energy range than SM QCD

SUEPs

- + Quasi-conformal dark sector with 't Hooft coupling $\lambda \equiv g^2 N_{colors} \gg 1$
 - Dark mesons produced with mass scales smaller than mediator
 - Showering process is efficient over a larger energy range than SM QCD

Soft Unclustered Energy Patterns (SUEPs):

high multiplicity, isotropic, low p_T tracks final state

From <u>arXiv:1612.00850</u>

Experimental Challenges

"A spray of low p_T tracks? Have you heard of pileup?"

Average event at CMS: quite hard to distinguish SUEP from so-called "pileup", the additional overlapping pp interactions that happen concurrently with the interaction of interest.

From https://cms.cern/news/how-cms-weeds-out-particles-pile

Experimental Challenges

"A spray of low p_T tracks? Have you heard of pileup?"

Key idea: use events with high hadronic activity ($\Sigma p_T^{AK4jets} \equiv H_T > 1200$ GeV) to select recoiling SUEP-ISR system

Experimental Challenges

"A spray of low p_T tracks? Have you heard of pileup?"

Key idea: use events with high hadronic activity ($\Sigma p_T^{AK4jets} \equiv H_T > 1200$ GeV) to select recoiling SUEP-ISR system

Event Display

Benchmark Model

* Thanks to Simon Knapen for putting together a <u>suep_generator</u>!

Benchmark Model

* Thanks to Simon Knapen for putting together a <u>suep_generator</u>!

Varying these 4 parameters, can access a very large phase space of final state topologies that share their SUEP-ness: spherical and high multiplicity!

Event Selection

- + Extremely minimal event selection to keep analysis as general as possible
- *1.* $H_T > 1200 \ GeV$
 - High hadronic activity
- 2. No leptons
- 3. At least two AK-15 clusters
 - * Tracks $p_T > 0.75~GeV$, $|\eta| < 2.5$ tightly fit to PV
 - Clustering with anti-kT, R=1.5 to collect as many tracks as possible
 - Two leading clusters are defined to be the SUEP-ISR system
 - SUEP candidate defined to be the highest multiplicity of the two
- 4. Boost into frame of SUEP & calculate Sphericity tensor

$$S_{boosted}^{SUEP} = \left(\frac{3}{2}\right)(\lambda_0 + \lambda_1)$$

CMS

Background Estimation

- Use sphericity (S^{SUEP}_{boosted}) and number of constituents (n^{SUEP}_{constituent}) to discriminate between background and signal
 - As shown on left, typical SUEP cluster has much higher constituents and sphericity than the typical QCD cluster
- + Dominant background: QCD multijet events

- + Problem 1: QCD Monte Carlo is not reliable in the tails, so how can we estimate this background?
- Problem 2: traditional data-driven estimation methods such as ABCD do not account for correlations between variables

Extended ABCD Method [arxiv: 1906.10831]

- + Fully data-driven method to predict background in signal region (SR)
- + Account for linear correlations in variables
- + Plenty of QCD events in CRs: small uncertainties and little signal contamination
- + Shape prediction for SR

$$SR^{Bin\,i} \approx F^{Bin\,i} \frac{H^2 F D^2 B^2}{G C A E^4} + O(\Delta^4)$$

Scaling factor applied to F histogram

CMS

Results

- + **Post-fit** compared to **data** is shown for all ABCD regions: excellent agreement with Standard Model prediction
- + Validation region (VR) used to verify the ABCD prediction in data
- + Yield systematic on ABCD prediction from orthogonal selection (ISR), shape systematic from F/C shape

CMS

Limits

- + Can put stringent limits on SUEP production
- + Particularly for high m_S , and T_D , m_{ϕ} ; independent of decay mode (m_A ,), see backup

Conclusions

- + First search for SUEPs, novel signature motivated by Hidden Valley theories
- + Demonstrated novel use of CMS detector to reconstruct non-traditional objects
- Novel background estimation technique employed, and developed procedures to validate in data and apply systematics
- + Stringent limits put on wide areas of the phase space for a benchmark model
- + Similar topologies in instantons, theories with extra spatial dimensions, and many-step decays in a hidden sector
- + Submitted to PRL
- + <u>arXiv:2403.05311</u>
- + Supplementary figures
- + <u>HEPdata</u>

Backup

Hidden Valleys

Confining, non-Abelian gauge group to extend SM

 $G_{SM} \times G_{v}$

Stable, neutral DM: global flavor symmetry in dark sector

Naturalness: from confinement, we have a natural scale, Λ_{dark}

Suppressed interactions with SM: EFT below confinement suppressed by powers of Λ_{dark}

Self-interactions: which may explain galactic structure anomalies

See arXiv:hep-ph/0604261, arXiv:1809.10152, arXiv:1604.04627, arXiv:1306.4676

Model Parameters

* Thanks to Simon Knapen for putting together a <u>suep_generator</u>!

Production

- + SM particles linked to hidden sector via scalar mediator S
- The cross section for a scalar particle S which couples to the SM via an effective point-like ggS operator is considered
- Cross section corresponds to gg fusion of a BSM Higgs (recommended by LHC Higgs WG Yellow <u>report</u>)

Showering

- + Dark quark matter masses below $\Lambda_D \rightarrow \text{dark quarks hadronize in}$ "dark shower"
- + Large 't Hooft coupling \rightarrow dark particles emitted isotropically
 - In QCD/Yang-Mills with coupling constant *g* and *N* colors, 't Hooft coupling is *gN*
- + Mass gap b/w dark hadrons < mass of portal state → high multiplicity of soft dark particles
- + LO Boltzmannian thermal model is employed for the decay

$$\frac{dN_{\phi}}{dp} \propto e^{-\sqrt{p^2 + m^2}/T}$$

+ Keep sampling distribution until all energy is used up \rightarrow multiplicity related by: $m_0 = m_0$

$$N \sim \frac{m_{\rm S}}{m_{\phi}} \sim \frac{m_{\rm S}}{T}$$

Parameters: m_{ϕ} , T

Decay to SM

- + Dark hadrons decay promptly to SM particles through dark photons (A')
- + Consider 3 cases:

 m_{A^\prime} = 0.5 GeV, $A^\prime \rightarrow e^+e^-$ (40%), $\mu^+\mu^-$ (40%), $\pi^+\pi^-$ (20%)

 $m_{A'}$ = 0.7 GeV, $A' \rightarrow e^+e^-$ (15%), $\mu^+\mu^-$ (15%), $\pi^+\pi^-$ (70%)

 m_{A^\prime} = 1.0 GeV, $A^\prime \rightarrow \pi^+\pi^-$ (100%)

 $\Gamma[A' \to \ell^+ \ell^-] \simeq \frac{m_{A'} \alpha \varepsilon^2 \cos^2(\theta_W)}{3} \left(1 + \frac{2m_\ell^2}{m_{A'}^2}\right) \sqrt{1 - \frac{4m_\ell^2}{m_{A'}^2}} \,.$

+ $c \tau < 1 \, mm$ at these masses corresponds to approx. $\epsilon > 10^{-5}$, leaving plenty of non-excluded dark photon $\epsilon - m_{A'}$ phase space

Parameters: $m_{A'}$

SUEP in Context

From arXiv:2107.12379v1

- + SUEP signature shown in the parameter space of the strongly coupled dark sector models
- + Use this to bound the temperature, mass of the dark pseudoscalar meson that we analyze

Parameter	Values [GeV]
m_S	125, 200, 300,400,500,600,700,8 00,900,1000
m_{ϕ}	2* <i>m_A</i> , 2, 3, 4
T/m_{ϕ}	0.5, 1, 2 (for <i>m_s</i> =400, 700 GeV: 0.25, 0.5, 0.75, 1, 2, 3, 4)
$m_{ m A'}$	generic (1 GeV), hadronic (0.7 GeV), leptonic (0.5 GeV)

Event Selection

$m_{\rm S}$	$m_{\Delta'}$	$H_{\rm T}^{\rm gen} > 1000 { m GeV}$	Lepton Veto	Trigger	$H_{\rm T} > 1200 {\rm GeV}$	One AK15 Cluster	$n_{\rm constituent}^{\rm SUEP} > 70$	$S_{ m boosted}^{ m SUEP} > 0.5$	Efficiency
[GeV]	[GeV]	1	1	00	•		constituent	boosted	
125	1	0.002596	0.9994	0.87	0.703	0.946	0.062	0.58	0.0207
125	0.5	0.002596	0.9989	0.864	0.717	0.945	0.058	0.5	0.0169
125	0.7	0.002596	0.9943	0.784	0.776	0.942	0.047	0.5	0.0132
200	1	0.004823	0.99972	0.8762	0.745	0.9491	0.695	0.932	0.402
200	0.5	0.004823	0.99916	0.8755	0.756	0.9443	0.65	0.937	0.38
200	0.7	0.004823	0.9915	0.819	0.797	0.9431	0.595	0.93	0.338
300	1	0.009036	0.99939	0.876	0.783	0.9469	0.9799	0.9705	0.617
300	0.5	0.009036	0.99915	0.8835	0.782	0.9454	0.9771	0.9736	0.621
300	0.7	0.009036	0.9922	0.8433	0.799	0.9468	0.9695	0.971	0.596
400	1	0.01467	1.0	0.869	0.823	0.944	0.9928	0.9856	0.66
400	0.5	0.01467	0.99871	0.8755	0.809	0.9485	0.992	0.9792	0.652
400	0.7	0.01467	0.9942	0.8493	0.808	0.9465	0.9882	0.9813	0.627
500	1	0.02172	0.99987	0.8574	0.8522	0.9508	0.9959	0.9768	0.676
500	0.5	0.02172	0.9997	0.866	0.828	0.954	0.9978	0.9782	0.668
500	0.7	0.02172	0.9954	0.8501	0.8332	0.9477	0.9944	0.9787	0.65
600	1	0.0302	1.0	0.83	0.88	0.954	0.9966	0.9795	0.68
600	0.5	0.0302	0.99942	0.8478	0.8632	0.9532	0.9981	0.9809	0.683
600	0.7	0.0302	0.9958	0.8449	0.8536	0.9503	0.9972	0.979	0.666
700	1	0.04009	0.99954	0.8102	0.9042	0.9578	0.99926	0.9801	0.687
700	0.5	0.04009	1.0	0.823	0.878	0.956	0.9995	0.977	0.675
700	0.7	0.04009	0.9967	0.8305	0.8675	0.9549	0.9986	0.9797	0.671
800	1	0.05141	0.99967	0.7778	0.9268	0.9617	0.99977	0.9814	0.68
800	0.5	0.05141	0.99974	0.794	0.909	0.959	0.9996	0.9777	0.676
800	0.7	0.05141	0.9969	0.821	0.886	0.969	0.9993	0.9813	0.689
900	1	0.06415	1.0	0.717	0.958	0.969	0.9993	0.9854	0.656
900	0.5	0.06415	1.0	0.762	0.931	0.968	1.0	0.9811	0.674
900	0.7	0.06415	0.9979	0.7814	0.9123	0.968	0.99978	0.9835	0.677
1000	1	0.0783	0.99957	0.685	0.9727	0.9772	1.0	0.985	0.641
1000	0.5	0.0783	0.9991	0.697	0.958	0.9725	1.0	0.9807	0.636
1000	0.7	0.0783	0.99791	0.7489	0.9255	0.9755	0.99993	0.982	0.663
1200	1	0.1919	1.0	0.541	0.9923	0.988	1.0	0.99	0.525
1200	0.7	0.1919	0.9992	0.66	0.954	0.992	1.0	0.983	0.613
1200	0.5	0.1919	0.9997	0.585	0.981	0.9903	1.0	0.9914	0.563
1500	1	0.5856	0.99967	0.36	0.9942	0.9988	1.0	0.993	0.355
1500	0.7	0.5856	0.9986	0.512	0.9767	1.0	1.0	0.9965	0.498
1500	0.5	0.5856	1.0	0.407	0.9953	0.9979	1.0	0.9948	0.402
2000	1	1	0.99986	0.771	0.9989	1.0	1.0	0.9976	0.768
2000	0.7	1	0.9996	0.9814	0.9988	1.0	1.0	0.9971	0.977
2000	0.5	1	1.0	0.914	0.9982	1.0	1.0	0.9974	0.91

Systematics for Extended ABCD

- + Yield uncertainty
 - Cover higher order correlations between the variables
 - Repeat the analysis using the ISR jet (no signal contamination there), and check the total yield closure in this the ISR signal region
 - Any non-closure is taken as a systematic on the total yield prediction (8%)

	2016	2017	2018
Observed Yield	835	1078	1373
Predicted Yield	828 ± 96	$1130\pm~120$	$1160\pm~110$
Ratio	1.01 ± 0.13	0.96 ± 0.09	1.18 ± 0.11

- + Shape uncertainty
 - Differences between SR and F estimated via $(F_{bin}/F)/(C_{bin}/C) \approx (SR_{bin}/SR)/(F_{bin}/F)$
 - Fit a parametrized line using Bins 0 and 1 to predict value of F/C in Bins 2-4
 - Systematic is correlated among bins in the fit

Signal Systematics

Applied to signal samples:

1. Track reconstruction: track killing technique from Lund jet plane analysis2. Trigger scale factors3. Jet energy corrections4. Pileup weights, with up and down variations, applied as function of # of true interactions in MC5. Parton shower weights6. Pre-fire weights7. p_T reweighting on the Higgs (mS = 125 GeV only)

No further theoretical uncertainties applied:

+ Theoretical uncertainty on the dark shower is so much larger than any LO to NLO correction uncertainty that it is not worth adding them

Validation Region

- + Use the first bin of the SR, which has negligible contamination from signal, as a validation for the method
- + Subsequently not utilized for the fit

	2016	2017	2018
Observed Yield	79518	100728	137527
Predicted Yield	$81200 \pm 1200 \text{ (stat)} \pm 6500 \text{ (syst)}$	$105000 \pm 1000 \text{ (stat)} \pm 8000 \text{ (syst)}$	$136000 \pm 2000 \text{ (stat)} \pm 11000 \text{ (syst)}$
Ratio	$0.98 \pm 0.01 \text{ (stat)} \pm 0.08 \text{ (syst)}$	0.96 ± 0.01 (stat) ± 0.08 (syst)	$1.01 \pm 0.01 \text{ (stat)} \pm 0.08 \text{ (syst)}$

+ Good closure in all years!

CMS

Limits

CMS

Limits

Limits

CMS

Limits

CMS