

Search for dark photons decaying to lepton jets with the CMS experiment

APS Division of Particles & Fields Meeting University of Pittsburgh / Carnegie Mellon University May 13, 2024

Lenny Spiegel, Fermilab

Peter Dong, Sreevardhan Atyam, Ivan Chen, Albert Han, Catherine Jenks, Marcus Kubon, Claire O'Brien-Dull, Gavin O'Malley, Vikram Rao, Anala Thakkar, Malcolm Wilson-Ahlstrom, *Illinois Mathematics and Science Academy* <u>Paul Karchin</u>, *Wayne State University*

On behalf of the CMS Collaboration

Models of dark photon production from BSM higgs

Falkowski-Ruderman-Volansky-Zupan (FRVZ) model <u>JHEP 1005:077,2010</u>

f_d dark fermion
\$\mathcal{Y}_d\$ dark photon
HLSP hidden lightest stable particle (fermion)
f standard model fermion

Hidden Abelian Higgs Model (HAHM) D. Curtin, R. Essig, S. Gori and J. Shelton, <u>JHEP 02 (2015) 157</u>

Figures from ATLAS Collab., JHEP 06 (2023) 153

Dark photon branching fractions to SM particles

Malte Buschmann, Joachim Kopp, Jia Liu, Pedro A. N. Machado, "Lepton Jets from Radiating Dark Matter," <u>JHEP 07 (2015) 045</u>

Existing searches for prompt dark photons

CMS Collab . <u>Physics Letters B 752</u> (2016) 146–168

ATLAS Collab. <u>JHEP 02 (2016) 062</u>.

Full Simulation Trigger Study for CMS HL-LHC detector

CMS Run 2 Full Simulation: Reconstructed Mass of Dark Photon

FRVZ model BSM higgs mass 1000 GeV pair of dark photons Lepton jet reconstruction reconstructed muons with pT > 5 GeVjet cone size $\Delta R < 0.01$

Triggers

Single muon: One isolated muon with pT > 24 GeV Double muon: One muon pT > 27 GeV, one muon pT > 37 GeV

Dark Photon Mass = 4 GeV

Dark Photon Mass = 0.3 GeV

CMS Run 2 Full Simulation: Drell-Yan Production Simulation sample corresponds to Run 2 integrated luminosity of 137 fb⁻¹ no trigger requirement each muon: $p_T > 5$ GeV reconstructed jet requires two muons with $\Delta R < 0.50$

Multivariate Selection for Dark Photon Signal with Drell-Yan Background

Run 2 MC, full simulation

FRVZ model, γ_d mass 0.5 GeV, higgs mass 1000 GeV

signal efficiency = efficiency per jet

BDT = boosted decision tree

MVA variables: # of particles in jet maximum single particle isolation of jet particles n of jet ΔR ΔpT (between leading pT muons in jet) no trigger selection each muon pT > 5 GeV, no charge selection ∆R < 0.50 for muon pairs in jet most events have one reconstructed jet

Summary of Results

- The shape of the reconstructed dark photon mass distribution is studied over the range from 0.1 GeV to 4.0 GeV.
 - At low mass the distribution has a tail-like structure, while at high mass, a peak shape is evident.
- The normalized mass distribution of standard model Drell-Yan events is compared between opposite sign and like sign muon pairs, suggesting a possible control sample for a blind analysis.
- A multivariate event selection using the boosted decision tree method provides suppression of Drell-Yan background by better than a factor of 100 while retaining good signal efficiency.