

Search for t-channel leptoquarks in the high mass dilepton spectrum with the CMS detector

Sanjana Sekhar¹, Oz Amram², Morris Swartz¹ ¹Johns Hopkins University, ²Fermilab DPF-PHENO 2024, 14 May 2024

Motivation

Leptoquarks (LQs) are colour-triplet bosons that mediate interactions between a quark and a lepton. Historically, they appear in a variety of BSM models: GUTs, compositeness, technicolor models etc.

In this analysis we search for 8 non-resonant leptoquarks (LQs) coupling up and down quarks to electrons and muons for $m_{\ell\ell} > 500 \ GeV$

- Seu, Sed scalar LQs coupling u/d quarks to electrons
- $S_{\mu u}, S_{\mu d}$ scalar LQs coupling u/d quarks to muons
- V_{eu} , V_{ed} vector LQs coupling u/d quarks to electrons
- $V_{\mu u}$, $V_{\mu d}$ vector LQs coupling u/d quarks to muons

We search for LQs with 3B+L=0. In the nomenclature of [1]: S_{eu} and $S_{\mu u}$ belong to the R_2 family with RL couplings (Q_e =5/3) S_{ed} and $S_{\mu d}$ belong to the $\widetilde{R_2}$ family with RL couplings (Q_e =2/3) V_{eu} , V_{ed} , $V_{\mu u}$ and $V_{\mu d}$ belong to the U_3 family with LL couplings (Q_e =5/3 or 2/3)

 R_2 LQs appear in BSM extensions that explain the muon g-2 anomaly [2]. U_3 LQs appear in BSM extensions that explain LFV and LFUV [1].

Why search for t-channel leptoquarks?

So far, CMS and ATLAS have not made a targeted search for t-channel LQs coupling up and down quarks to electrons and muons.

- Direct searches for LQs coupling to u/d quarks to electrons have excluded them upto 1.76 TeV [4], while LQs coupling u/d quarks to muons have been excluded only upto 0.66 TeV [4].
- Pair production and single production searches for heavy LQs are limited by the CMS centre-of-mass energy because the LQs are produced on shell.
- The quark-LQ-lepton interaction is characterized by the Yukawa coupling y_{LQ} . t-channel LQ effects are sensitive to y_{LQ}^4 (pure LQ exchange) and y_{LQ}^2 (interference with γ/Z^0)
- Additionally, this channel has clean signals, is easily triggerable and has well understood backgrounds.

t-channel production is non-resonant \Rightarrow

can probe heavier LQs than previous searches for first/second generation LQs.

The angular distribution of an S_{eu} leptoquark of mass 2/3/4 TeV deviates significantly from the expected SM curve. The coupling strength is held fixed at

Analysis strategy

Our analysis follows from ideas presented in [5], where the angular distribution of the angle between the incident quark and outgoing lepton is used as a probe of the quark-LQ-lepton interactions.

Cross section for leading order pure LQ exchange and the interference between LQ and γ^*/Z_0 amplitudes

For scalar LQs S_{eu} , S_{ed} , $S_{\mu u}$, $S_{\mu d}$ (y_{LQ} = Yukawa coupling for S_{LQ})

$$\frac{d^2\sigma}{dMdc_*} \propto \frac{d\sigma}{dc_*}(M^2) + y_{LQ}^4 N_{LQ(pure)}^S \frac{(1-c_*)^2}{(1-c_* + \frac{2M_{LQ}^2}{M^2})^2} + y_{LQ}^2 N_{LQ(int)}^S \frac{(1-c_*)^2}{1-c_* + \frac{2M_{LQ}^2}{M^2}}$$

For vector LQs V_{eu} , V_{ed} , $V_{\mu u}$, $V_{\mu d}$ (g_{LQ} = Yukawa coupling for V_{LQ})

$$\frac{d^2\sigma}{dMdc_*} \propto \frac{d\sigma}{dc_*}(M^2) + g_{LQ}^4 N_{LQ(pure)}^V \frac{(1+c_*)^2}{(1-c_* + \frac{2M_{LQ}^2}{M^2})^2} + g_{LQ}^2 N_{LQ(int)}^V \frac{(1+c_*)^2}{1-c_* + \frac{2M_{LQ}^2}{M^2}}$$

- We bin aMC@NLO Drell-Yan events in reconstructed dilepton mass, rapidity and cosθ
- Reweight them using generator level analytical functions to create parameter-independent templates that mimic the various pieces of expected differential distributions
- > Separate templates built for the pure LQ exchange and interference with γ/Z^0 , and various backgrounds
 - > We then fit linear combinations of signal + background templates for y_{LQ}^2 (g_{LQ}^2)

Event Selection, Backgrounds & Systematics

Templates are built using SM DY fully simulated aMC@NLO samples centrally produced by CMS [6] in 2016, 2017 and 2018 (Run-2) corresponding to $138 fb^{-1}$

Selection criteria for electrons and muons:

- + $p_T > 40~GeV$ for the leading lepton, $p_T > 15~GeV$ for the subleading lepton
- Both leptons must have opposite sign
- Full angular acceptance, and well isolated

Background composition for $m_{\ell\ell} > 500 \text{ GeV}$ in dimuon (dielectron) channel:

- SM Drell-Yan events 85% (82%)
- *tt, tW*, *tW* events 10% (9%)
- WW, ZZ, WZ events 4.5% (4%)
- QCD multijet and W+jets events 0.5% (5%)
- $\gamma \gamma \rightarrow \ell \ell$ events < 5%
 - SM DY, top and diboson backgrounds are well modeled in MC top and diboson backgrounds are validated in data with *e*μ samples
 - QCD multijet and W+jets backgrounds can produce fake leptons estimated via data-driven fake rate measurement.

Leading systematics are statistical uncertainty in the MC samples, uncertainty to cover the LO reweighting scheme, lepton momentum scale, ID and isolation efficiencies.

Fit results

We fit to the full Run-2 data collected by CMS in 2016, 2017 and 2018

Our POIs are A_4, A_0 and $y_{LQ}^2(g_{LQ}^2)$

- Coefficient of the pure exchange is $y_{LQ}^4(g_{LQ}^4)$, coefficient of the interference term is $y_{LQ}^2(g_{LQ}^2)$
- A_0 and A_4 are angular coefficients that appear in the SM DY cross section, A_4 is related to the SM Forward-Backward Asymmetry A_{FB}
- Fits are performed for all 3 years simultaneously
- Muon and electron channels are fit separately
- Separate fits are performed for each of the 8 leptoquarks, and each leptoquark is fit separately per mass point
- Fit results for the 2.5 TeV mass point for up-type LQs are shown below.

Note: In the SM,
$$A_4 = 1.61$$
, $A_0 = 0.06$, $y_{LQ}^2 = 0$.

CMS Work in progress

Channel	S _{eu}	$S_{\mu u}$	V _{eu}	$V_{\mu u}$
A_0	0.074 ± 0.069	0.02 ± 0.055	0.05 ± 0.068	0.012 ± 0.053
A_4	1.612 ± 0.078	1.59 ± 0.066	1.66 ± 0.076	1.636 ± 0.063
$y_{LQ}^2(g_{LQ}^2)$	-0.1 ± 0.161	-0.13 ± 0.158	-0.085 ± 0.027	-0.099 ± 0.063

With these results, we extract 95% CL upper limits on the coupling $(y_{LQ}^2(g_{LQ}^2))$ as a function of LQ mass for all 8 LQs

Postfit distributions for 2.5 TeV S_{eu} , V_{ud}

95% CL Upper Limits on y_{LQ}^2

- Tighter limits on up type
 LQs than down type
- Muon LQs limits are almost similar to electron LQs
 - Tighter limits on vector LQs than scalars
- All 8 LQs types have sensitivity upto 5 TeV, with $y_{LQ} (g_{LQ}) < 3.0$

Sanjana Sekhar 5/14/2024

95% CL Upper Limits on g_{LQ}^2

- Tighter limits on up type
 LQs than down type
- Muon LQs limits are almost similar to electron LQs
 - Tighter limits on vector LQs than scalars
 - All 8 LQs types have sensitivity upto 5 TeV, with $y_{LQ} (g_{LQ}) < 3.0$

- Presented results of the first CMS analysis to search for scalar and vector non-resonant LQs coupling electrons and muons to up and down quarks
- Analysis is at the final stages of review with the Analysis Review Committee within CMS
- Hoping to publish the results in the next couple of months in JHEP.

Thank you for listening! Please ask me questions ©

References

- 1. Bečirević, D., Košnik, N., Sumensari, O., & Funchal, R. Z. (2019, May 16). Palatable leptoquark scenarios for lepton flavor violation in exclusive $b \rightarrow sl_1l_2$ modes. arXiv.org. https://doi.org/10.48550/arXiv.1608.07583
- 2. Bigaran, I., & Volkas, R. R. (2020, October 28). Getting chirality right: Single $(g 2)_{\{e,\mu\}}$ scalar leptoquark solutions to the puzzle. Physical Review D. https://journals.aps.org/prd/abstract/10.1103/PhysRevD.102.075037
- 3. Raj, N. (2017). Anticipating nonresonant new physics in dilepton angular spectra at the LHC. *Physical Review D*, *95*(1). https://doi.org/10.1103/physrevd.95.015011
- 4. V. e. a. Khachatryan, "Search for single production of scalar leptoquarks in proton-proton collisions at sqrt(s) = 8 TeV", Physical Review D 93 (February, 2016) doi:10.1103/physrevd.93.032005.
- 5. A. e. a. Sirunyan, "Search for pair production of first-generation scalar leptoquarks at sqrt(s) = 13 TeV", Physical Review D 99 (March, 2019) doi:10.1103/physrevd.99.052002.
- 6. The CMS Collaboration et al, "The CMS experiment at the CERN LHC" 2008 JINST 3 S08004

