Emergent particles of a dS universe:

Thermal interpretation of the stochastic formalism and beyond

TaeHun Kim,

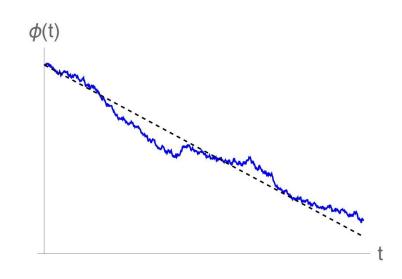
School of Physics, KIAS, Korea

arXiv: 2310.15216 [gr-qc]

Outline

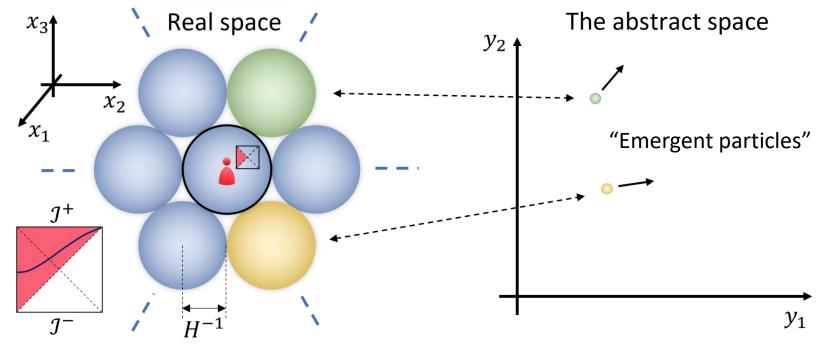
- Introduction
 - Stochastic formalism of slow-rolling scalar field during inflation
- Giving thermal interpretation
 - The formalism & heat bath model
- And beyond
 - 1st slow-roll condition & Hubble expansion
- Discussion and Conclusion

Introduction

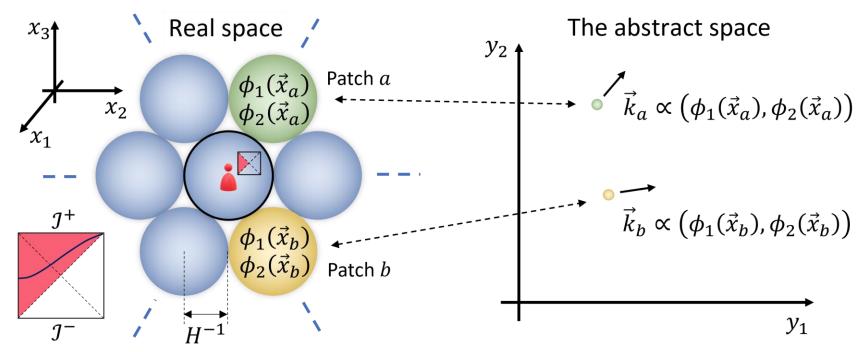

Starobinsky (1986) Starobinsky, Yokoyama (1994)

- The stochastic formalism
 - IR EFT for a slow-rolling scalar field in inflation; "coarse-grained" ($k \ll aH$) field
 - Classical random evolution: Langevin equation

$$d\phi = -\frac{V'(\phi)}{3H}dt + \sqrt{\frac{H^3}{4\pi}} dW$$


- Used for non-perturbative calculations of P(k), PBH, ...
- Can we pursue thermal interpretation?

 - Minimal setup: dS background + 1 spectator field ϕ



Effective Lagrangian approach: Rigopoulos (2013) & (2016)

- Horizon-sized patches in real 3D space as particles in a virtual space
 - This is a formalism. I'm NOT claiming a new theory of spacetime.

- 1. Field value ∝ momentum; "dual" w.r.t. usual field space
- 2. "Classical" (non-quantum) mechanics of the same structure

• By the two assumptions:

- Volume factor for conversion: Hubble volume = $4\pi/3H^3$
- Work-energy theorem: $E_k = W = \int F dx = \int v(k)dk$

Hubble patch in real space	Emergent particle in the Abs. space	Equation
Field value ϕ	Momentum k	$k = \frac{4\pi M_P m_\phi}{\sqrt{3}H^2} \phi$
Potential $V_{oldsymbol{\phi}}$	Kinetic energy E_k	$E_k = \frac{4\pi}{3H^3} V_{\phi}$
$V_0 = 3M_P^2 H^2$	Mass M	$M = \frac{4\pi M_P^2}{H}$
Potential slope V_ϕ'	Velocity v	$v = \frac{1}{\sqrt{3}M_P H m_{\phi}} V_{\phi}'$

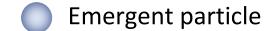
• Substitution into the Langevin equation for ϕ

Real space

The abstract space

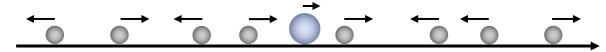
$$d\phi = -\frac{V'(\phi)}{3H}dt + \sqrt{\frac{H^3}{4\pi}} dW \longrightarrow dk = -\frac{4\pi M_P^2 m_\phi^2}{3H^2} v dt + \sqrt{\frac{4M_P^2 m_\phi^2}{3H}} dW$$

- ~ classical Brownian motion in a medium at a finite temperature
 - What kind of heat bath would realize the Brownian motion correctly?


Heat bath model

Unsuccessful trials: Massive bath particles, elastic collisions, ...

- Successful model: heat bath of massless particles
 - $c = 3H/m_{\phi}$: Speed of light (massless particles) in the abstract space
 - $T = H/2\pi = T_{dS}$: Bath temperature
 - $\lambda = 8\pi^2 M_P^2 m_\phi / H^2$: Number density
- Bath particle


$$f(p) \propto e^{-\beta c|p|}$$

$$v = \pm c$$

$$k = \frac{4\pi M_P m_\phi}{\sqrt{3}H^2} \phi$$

$$v = \frac{1}{\sqrt{3}M_P H m_{\phi}} V_{\phi}'$$

The abstract space (1D)

Giving thermal interpretation

Thermal interpretation. But...

Classical thermal motion (abs. space)

Heat bath of massless particles

•
$$c = 3H/m_{\phi}$$

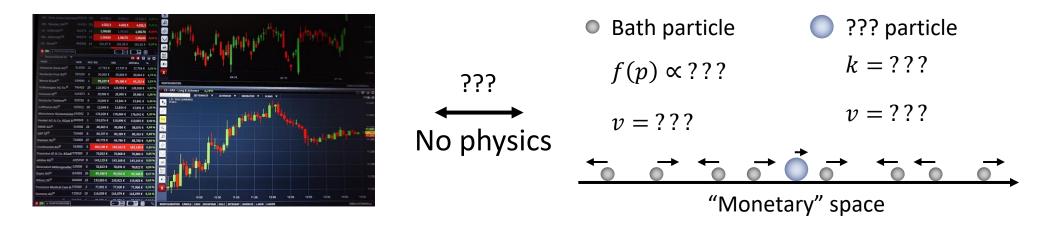
•
$$T = H/2\pi = T_{dS}$$

Classical mechanics

Momentum conservation (Kinetic theory)

$$dk = -\frac{4\pi M_P^2 m_\phi^2}{3H^2} v dt + \sqrt{\frac{4M_P^2 m_\phi^2}{3H}} dW$$

Emergent particle formalism


EFT for coarse-grained field

$$d\phi = -\frac{V'(\phi)}{3H}dt + \sqrt{\frac{H^3}{4\pi}} dW$$

Quantum field evolution (real space)

Giving thermal interpretation

• "Heat bath engineering" is possible for any random-walking variable

• The physical significance comes from the reappearance of other seemingly unrelated quantities and phenomena in consistent ways

And beyond

Unexpected but consistent agreement

Classical thermal motion (abs. space)

Energy conservation

Hubble expansion & bath particle collision

Speed of light

$$c = 3H/m_{\phi}$$

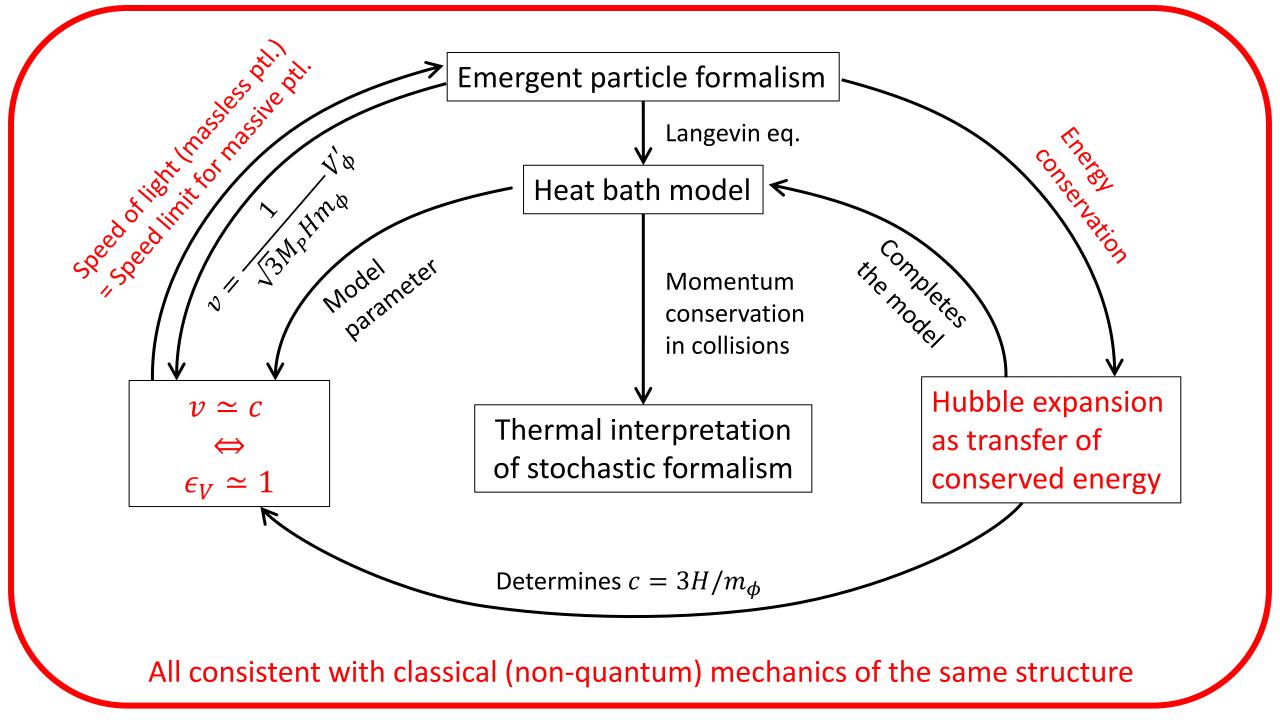
Slow-rolling field

Classical

v = c is expected to be

- Speed limit for massive particle
- $v \ll c$ physics breaks down

 $v \propto V_\phi'$ from the formalism



•

$$\epsilon_V=1$$
 (or $V_\phi'=3\sqrt{2}M_PH^2$) is

- Potential slope limit for slow-roll
- (Quasi-) dS expansion breaks down

Quantum field evolution (real space)

Discussion

- Properties of the abstract space
 - Time & spatial translation symmetry (energy & momentum conservation)
 - But no Lorentz symmetry (generalized relativistic effect; $k \propto \phi$, $E_k \propto V_{\phi}$, $v \propto V_{\phi}'$)
 - The usual relativistic mechanics is recovered for a specific form of potential
- Primitive form of ...?

[scalar in dS at IR] \cap [flat spacetime Q (thermal) FT] \neq Ø

After having the quantum version...

Summary

- A thermal interpretation of stochastic formalism is obtained by proposing a correspondence between causal patches in dS and particles in an abstract space.
- Consistent reinterpretation of the 1st slow-roll condition and the Hubble expansion are also achieved, giving further physical significance.

Thank you for the attention!

THK; 2310.15216 [gr-qc]