Phenomenologically Viable Froggatt-Nielsen Solutions to the Lepton Flavor Puzzle

Micah Mellors Collaborators: Claudia Cornella, David Curtin, Gordan Krnjaic University of Toronto

Outline

- Introduce the flavour puzzle and the Froggatt-Nielsen solution
- Discuss the general class of FN solutions
- Extensions to the lepton sector and neutrino masses
- Low energy decay observables
- Collider physics outlook

Background

The Flavour Puzzle

- The masses of the fermions span 6 orders of magnitude without neutrinos and 12 with neutrinos
- Theses masses are technically natural, but the dramatic hierarchies invite a BSM explanation
- Possible explanation: horizontal symmetries

DOI: 10.1016/0550-3213(79)90316-X

Froggatt-Nielsen

- All fermions are charged under a new U(1) $_{\rm FN}$
- Yukawas generated by effective operators coupled to heavy flavon
- If $\frac{\langle \phi \rangle}{\Lambda} \equiv \epsilon \sim 0.1$, this can result in large hierarchies in low-energy Yukawas

$$\mathcal{L} \supset -c_{ij}^{u} \bar{Q}_{i} \tilde{H} u_{j} \left(\frac{\phi}{\Lambda}\right)^{|X_{Q_{i}} - X_{u_{j}}|} - c_{ij}^{d} \bar{Q}_{i} H d_{j} \left(\frac{\phi}{\Lambda}\right)^{|X_{Q_{i}} - X_{d_{j}}|} + h.c.$$

5

Determining Charges (Textures)

• Usual approach: work backwards from masses and mixings

Question: Does this miss phenomenologically viable textures?

Secondary question: Are there experimental signatures of different FN models which could probe these different textures?

The Quark Sector

$$\mathcal{L} \supset -c_{ij}^{u} \bar{Q}_{i} \tilde{H} u_{j} \left(\frac{\phi}{\Lambda}\right)^{|X_{Q_{i}} - X_{u_{j}}|} - c_{ij}^{d} \bar{Q}_{i} H d_{j} \left(\frac{\phi}{\Lambda}\right)^{|X_{Q_{i}} - X_{d_{j}}|} + h.c.$$

- 1. Generate all possible textures
- 2. Populate c_{ij} with random O(1) coefficients
- 3. Numerically calculate resulting masses and mixings
- 4. Compare to SM values, allowing ϵ to vary to minimize deviation from SM
- 5. Repeat steps 2-4 for many choice of c_{ij}
- 6. Textures which are close to the SM most frequently are considered natural

arXiv: 2306.08026v2 ⁷

The Quark Sector

$\mathcal{L} \supset -c_{ij}^{u} \bar{Q}_{i} \tilde{H} u_{j} \left(\frac{\phi}{\Lambda}\right)^{|X_{Q_{i}} - X_{u_{j}}|} - c_{ij}^{d} \bar{Q}_{i} H d_{j} \left(\frac{\phi}{\Lambda}\right)^{|X_{Q_{i}} - X_{d_{j}}|} + h.c.$

- 1. Generate all possible textures
- 2. Populate c_{ij} with random O(1) coefficients
- 3. Calculate resulting masses and mixings
- 4. Compare to SM values
- 5. Repeat 2-4 for many choice of c_{ij}
- 6. Textures which are close to the SM most frequently are considered natural

Num.	X_{Q_1}	X_{Q_2}	X_{u_1}	X_{u_2}	X_{d_1}	X_{d_2}	X_{d_3}	\mathcal{F}_2 (%)	\mathcal{F}_5 (%)	ϵ
1	3	2	-4	-2	-3	-3	-3	2.7	67	0.17
2	3	2	-4	-2	-4	-3	-3	2.5	66	0.18
3	3	2	-3	-1	-3	-2	-2	1.9	56	0.12
4	3	2	-4	-1	-3	-3	-3	1.5	65	0.16
5	4	3	-4	-2	-4	-3	-3	1.2	52	0.23
6	3	2	-4	-1	-3	-3	-2	1.1	63	0.15
7	4	2	-4	-2	-4	-3	-3	1.1	47	0.21
8	3	2	-3	-1	-2	-2	-2	0.9	41	0.11
9	3	2	-3	-1	-3	-3	-2	0.9	55	0.14
10	3	2	-4	-2	-3	-3	-2	0.9	59	0.16
11	2	1	-3	-1	-2	-2	-2	0.8	52	0.06
12	4	3	-4	-1	-4	-3	-3	0.8	52	0.22
13	4	3	-4	-2	-4	-4	-3	0.8	50	0.24
14	3	2	-4	-2	-4	-3	-2	0.7	56	0.17
15	4	3	-4	-2	-3	-3	-3	0.7	43	0.22
16	4	3	-4	-1	-3	-3	-3	0.6	45	0.21
17	4	2	-4	-2	-4	-4	-3	0.6	48	0.22
18	4	2	-4	-2	-3	-3	-3	0.6	38	0.2
19	3	2	-4	-1	-3	-2	-2	0.6	56	0.14
20	3	2	-3	-2	-3	-3	-2	0.6	45	0.15

arXiv: 2306.08026v2

The Lepton Sector

Lepton Extension

$$\mathcal{L} \supset -c_{ij}^{\ell} \bar{L}_i H e_j \left(\frac{\phi}{\Lambda}\right)^{|X_{L_i} - X_{e_j}|} + ?$$

• In lepton sector, need to contend with how neutrinos get mass

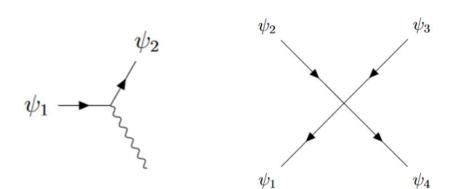
Lepton Extension

$$\mathcal{L} \supset -c_{ij}^{\ell} \bar{L}_i H e_j \left(\frac{\phi}{\Lambda}\right)^{|X_{L_i} - X_{e_j}|} - c_{ij}^{\nu} \bar{L}_i \tilde{H} N_R \left(\frac{\phi}{\Lambda}\right)^{|X_{L_i} - X_{N_{R_j}}|} + h.c.,$$

1. Pure Dirac: all hierarchies arise due to FN charge differences. Adds RH neutrinos to the SM

Lepton Extension

$$\mathcal{L} \supset -c_{ij}^{\ell} \bar{L}_i H e_j \left(\frac{\phi}{\Lambda}\right)^{|X_{L_i} - X_{e_j}|} - \frac{c_{ij}^W}{\Lambda} \bar{L}_i^{\ c} \tilde{H}^* \tilde{H}^{\dagger} L_j \left(\frac{\phi}{\Lambda}\right)^{|X_{L_i} + X_{L_j}|} + h.c.$$


1. Pure Dirac

2. Generic high energy physics: Weinberg operator

•
$$m_{
m v} \sim rac{v^2}{\Lambda} \Longrightarrow \Lambda \sim 10^{14}~{
m GeV}$$

Observables

- Flavour-violating decays
- Charged lepton flavour violating collider observables

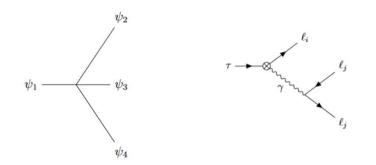
$$\frac{c_{ijkl}}{\Lambda_{eff}^2} \left(\bar{\psi}_i \psi_j \right) \left(\bar{\psi}_k \psi_l \right)$$

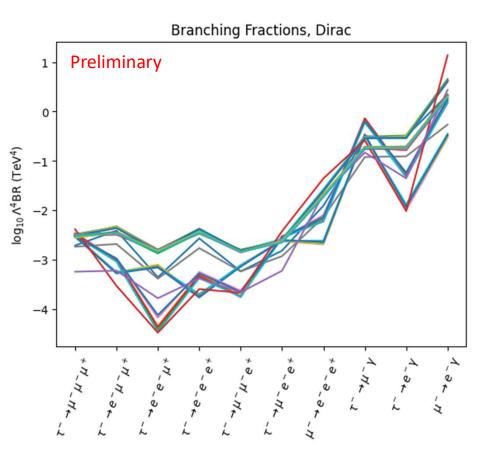
$$\frac{c_{ij}v}{\sqrt{2}\Lambda_{eff}^2}\bar{\psi}_{Li}\sigma^{\mu\nu}\psi_{Rj}F_{\mu\nu}+h.c.$$

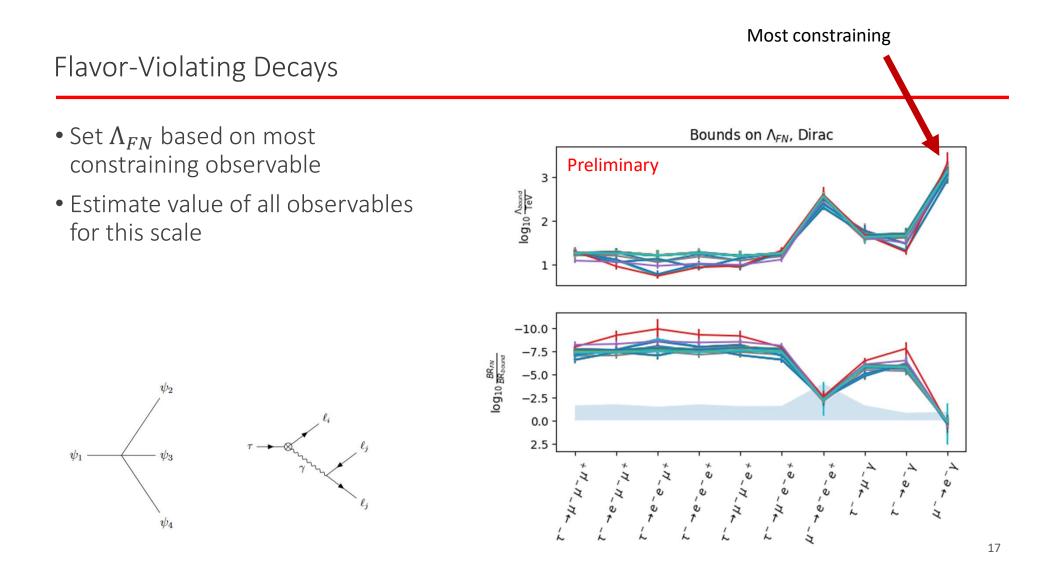
$$\frac{1}{\Lambda_{eff}^2} = \frac{\epsilon^{|X_i - X_j + X_k - X_l|}}{\Lambda_F^2}$$

Results

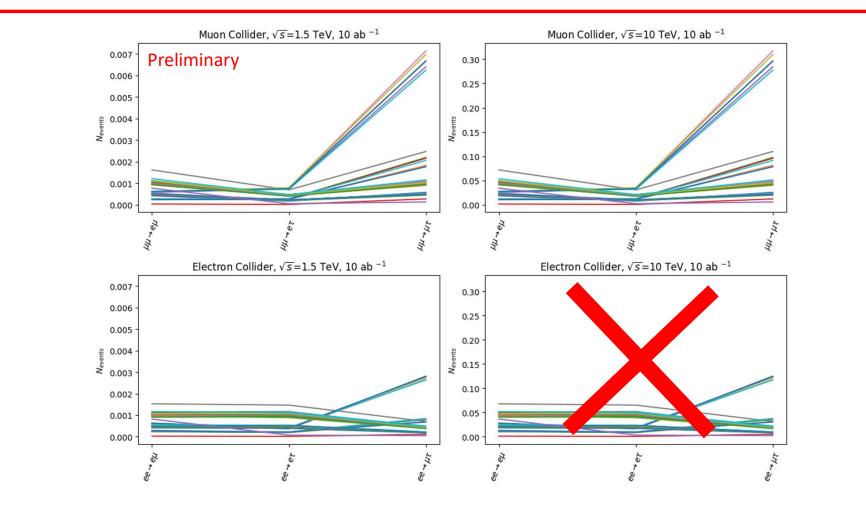
Dirac Textures


Preliminary


1	L_1	L_2	L_3	e_1	e_2	e_3	$ u_1$	$ u_2$	$ u_3$	F2 (%)	F_5 (%)	ϵ_2	NO (%)	index
7	7.0	6.0	6.0	4.0	3.0	1.0	-9.0	-7.0	-7.0	3.947	61.736	0.102038	91.671	136.0
6	5.0	5.0	5.0	3.0	2.0	0.0	-9.0	-8.0	-8.0	3.855	61.179	0.101925	91.731	133.0
7	7.0	6.0	6.0	4.0	3.0	1.0	-8.0	-7.0	-7.0	3.855	61.179	0.101925	91.731	133.0
4	1.0	4.0	4.0	7.0	2.0	-1.0	-9.0	-9.0	-8.0	2.096	72.521	0.087580	100.000	101.0
4	1.0	4.0	4.0	7.0	6.0	-1.0	-9.0	-9.0	-8.0	2.096	72.521	0.087580	100.000	101.0
7	7.0	3.0	3.0	5.0	0.0	-2.0	-9.0	-9.0	-9.0	1.975	67.457	0.082372	85.802	63.0
7	7.0	7.0	6.0	4.0	3.0	1.0	-9.0	-8.0	-8.0	1.756	62.909	0.125789	100.000	143.0
7	7.0	7.0	7.0	4.0	3.0	1.0	-9.0	-9.0	-8.0	1.683	72.569	0.141574	100.000	149.
6	5.0	5.0	5.0	3.0	2.0	0.0	-9.0	-9.0	-8.0	1.683	61.334	0.106958	100.000	134.
7	7.0	6.0	6.0	4.0	3.0	1.0	-8.0	-8.0	-7.0	1.683	61.334	0.106958	100.000	134.

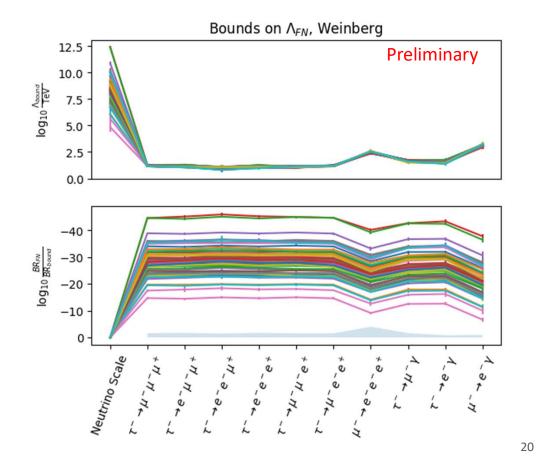

• Prefers normal ordering

Branching Fractions


- Assume O(1) coefficients for all SMEFT operators
- 3 body phase suppression is evident
- Decays bridging 2 generations are more suppressed

Collider Observables - Dirac

Weinberg


Preliminary

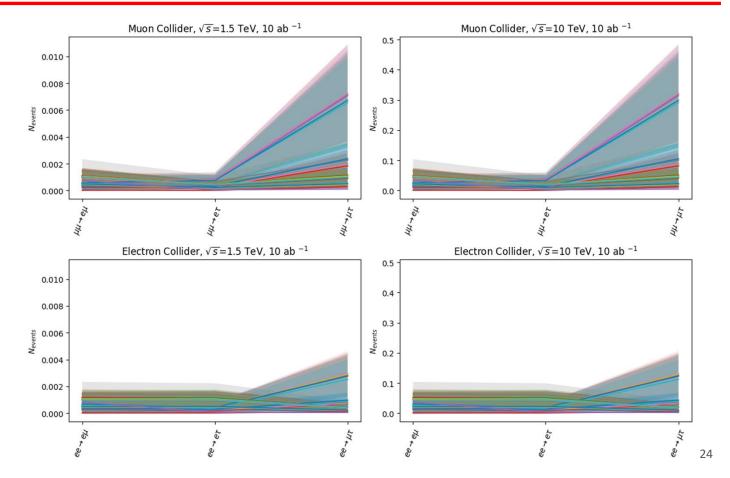
L_1	L_2	L_3	e_1	e_2	e_3	F ₂ (%)	F_5 (%)	ϵ_2	$\log_{10}\Lambda$	NO (%)	index
7.0	6.0	5.0	-7.0	-2.0	0.0	14.92	83.67	0.385782	11.025863	100.0	2274.0
6.0	5.0	4.0	-7.0	-3.0	-1.0	14.68	81.36	0.373136	11.722524	100.0	2102.0
7.0	6.0	5.0	-6.0	-2.0	0.0	14.10	82.55	0.373877	10.875496	100.0	2103.0
7.0	6.0	5.0	-7.0	-3.0	0.0	13.35	83.05	0.400469	11.202661	100.0	2299.0
7.0	6.0	5.0	1.0	-1.0	-5.0	13.11	78.34	0.332569	10.321272	100.0	982.0
6.0	5.0	4.0	-6.0	-2.0	0.0	13.11	78.25	0.331636	11.265313	100.0	1854.0
5.0	4.0	3.0	-7.0	-3.0	-1.0	12.81	78.64	0.331884	12.227701	100.0	1853.0
5.0	5.0	4.0	-6.0	-2.0	0.0	12.49	82.48	0.310666	11.113967	100.0	1617.0
4.0	4.0	3.0	-7.0	-3.0	-1.0	12.22	83.42	0.310346	12.128698	100.0	1616.0
6.0	6.0	5.0	1.0	-1.0	-5.0	11.97	82.25	0.311058	10.103275	100.0	766.0
Also prefers normal ordering						7.06.05.0-7.0-2.00.06.05.04.0-7.0-3.0-1.07.06.05.0-6.0-2.00.07.06.05.0-7.0-3.00.07.06.05.01.0-1.0-5.06.05.01.0-1.0-5.06.05.04.0-6.0-2.00.05.04.03.0-7.0-3.0-1.05.05.04.0-6.0-2.00.0	7.0 6.0 5.0 -7.0 -2.0 0.0 14.92 6.0 5.0 4.0 -7.0 -3.0 -1.0 14.68 7.0 6.0 5.0 -6.0 -2.0 0.0 14.10 7.0 6.0 5.0 -7.0 -3.0 0.0 14.10 7.0 6.0 5.0 -7.0 -3.0 0.0 13.35 7.0 6.0 5.0 -7.0 -3.0 0.0 13.35 7.0 6.0 5.0 1.0 -1.0 -5.0 13.11 6.0 5.0 4.0 -6.0 -2.0 0.0 12.81 5.0 4.0 3.0 -7.0 -3.0 1.0 12.49 4.0 3.0 -7.0 -3.0 1.0 12.22	7.06.05.0-7.0-2.00.014.9283.676.05.04.0-7.0-3.0-1.014.6881.367.06.05.0-6.0-2.00.014.1082.557.06.05.0-7.0-3.00.013.3583.057.06.05.01.0-1.0-5.013.1178.346.05.04.0-6.0-2.00.013.1178.255.04.03.0-7.0-3.0-1.012.8178.644.04.03.0-7.0-3.0-1.012.4982.48	7.0 6.0 5.0 -7.0 -2.0 0.0 14.92 83.67 0.385782 6.0 5.0 4.0 -7.0 -3.0 -1.0 14.68 81.36 0.373136 7.0 6.0 5.0 -6.0 -2.0 0.0 14.10 82.55 0.373877 7.0 6.0 5.0 -6.0 -2.0 0.0 14.10 82.55 0.373877 7.0 6.0 5.0 -7.0 -3.0 0.0 13.35 83.05 0.400469 7.0 6.0 5.0 1.0 -1.0 -5.0 13.11 78.34 0.332569 6.0 5.0 4.0 -6.0 -2.0 0.0 13.11 78.24 0.331636 5.0 4.0 -6.0 -2.0 0.0 12.81 78.64 0.331884 5.0 5.0 4.0 -6.0 -2.0 0.0 12.49 82.48 0.310666 4.0 4.0 -6.0 -2.0 0.0 12.22 83.42 0.310346	7.0 6.0 5.0 -7.0 -2.0 0.0 14.92 83.67 0.385782 11.025863 6.0 5.0 4.0 -7.0 -3.0 -1.0 14.68 81.36 0.373136 11.722524 7.0 6.0 5.0 -6.0 -2.0 0.0 14.10 82.55 0.373877 10.875496 7.0 6.0 5.0 -7.0 -3.0 0.0 13.35 83.05 0.400469 11.202661 7.0 6.0 5.0 1.0 -1.0 -5.0 13.11 78.34 0.332569 10.321272 6.0 5.0 4.0 -6.0 -2.0 0.0 13.11 78.25 0.331636 11.202661 7.0 6.0 5.0 1.0 -1.0 -5.0 13.11 78.34 0.332569 10.321272 6.0 5.0 4.0 -6.0 -2.0 0.0 12.81 78.64 0.31086 11.205513 5.0 5.0 4.0 -6.0 -2.0 0.0 12.49 82.48 0.310666 11.113967	7.0 6.0 5.0 -7.0 -2.0 0.0 14.92 83.67 0.385782 11.025863 100.0 6.0 5.0 4.0 -7.0 -3.0 -1.0 14.68 81.36 0.373136 11.722524 100.0 7.0 6.0 5.0 -6.0 -2.0 0.0 14.10 82.55 0.373877 10.875496 100.0 7.0 6.0 5.0 -7.0 -3.0 0.0 13.35 83.05 0.400469 11.202661 100.0 7.0 6.0 5.0 1.0 -1.0 -5.0 13.11 78.34 0.332569 10.321272 100.0 6.0 5.0 4.0 -6.0 -2.0 0.0 13.11 78.24 0.331636 11.265313 100.0 5.0 4.0 -6.0 -2.0 0.0 12.81 78.64 0.331884 12.227701 100.0 5.0 5.0 4.0 -6.0 -2.0 0.0 12.49 82.48 0.310666 11.113967 100.0 4.0 3.0 -7.0 <th< td=""></th<>

$$\frac{c_{ij}^W}{\Lambda} \bar{L_i}^c \tilde{H}^* \tilde{H}^\dagger L_j \left(\frac{\phi}{\Lambda}\right)^{|X_{L_i} + X_{L_j}|}$$

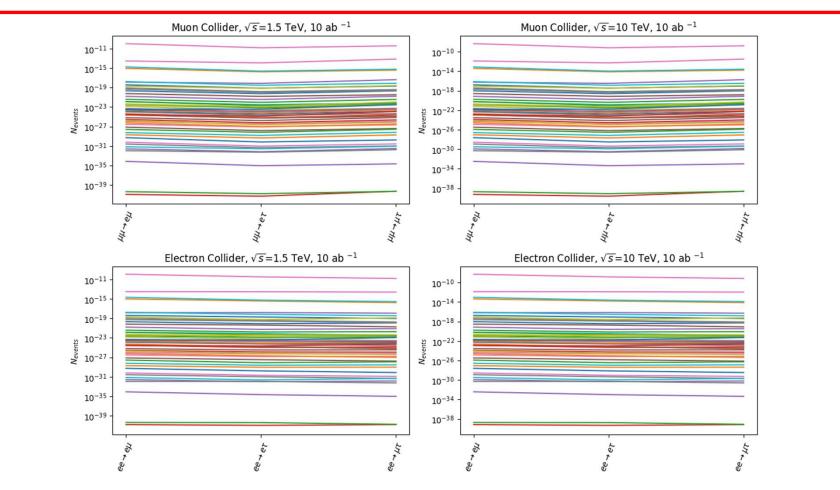
Weinberg

- In this case, we find Λ from the Weinberg scale
- FN suppression is not sufficient to bring Λ to observable levels in lepton decays or collider observables

Conclusions and Outlook

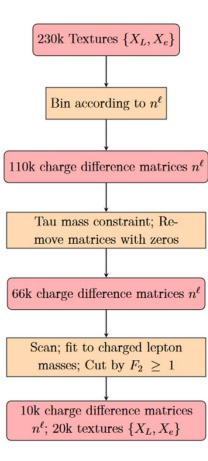

Conclusions

- We have found the most general category of leptonic FN models which can reproduce SM hierarchies
- We calculated some of the resulting observables and have found that low energy signatures tend to follow characteristic FN patterns
- FN models will be inaccessible except at extremely high energy future muon colliders
- Future work: Type 1 seesaw, lepton-quark interactions, polarization asymmetries


Backup Slides

Collider Observables

- Below 10 TeV, even the most optimistic scenario is unobservable
- A muon collider has greater reach than an electron collider particularly for *τe* final states


Fractional Deviation

$$\Xi_{SM} = \max_{i} \exp \left| \ln \left(\frac{\mu_{i}^{calc}}{\mu_{i}^{SM}} \right) \right|$$

$$\begin{split} \Xi_{\mu} &= \theta \left(\mu_{LB}^{SM} - \mu^{calc}, 0 \right) \exp \left| \ln \left(\frac{\mu^{calc}}{\mu_{LB}^{SM}} \right) \right| \\ &+ \theta \left(\mu^{calc} - \mu_{LB}^{SM}, 1 \right) \theta \left(\mu_{UB}^{SM} - \mu^{calc}, 1 \right) \\ &+ \theta \left(\mu^{calc} - \mu_{UB}^{SM}, 0 \right) \exp \left| \ln \left(\frac{\mu^{calc}}{\mu_{LB}^{SM}} \right) \right| \end{split}$$

26

Methods

