Gravitational Wave signal prospects for Classically Conformal Coleman Weinberg SM extension

Victor Baules

The University of Alabama

In Collaboration with Nobuchika Okada (U. of Alabama) in progress

> PHENO 2024 May 15, 2024

Classically conformal extended SM Radiative $U(1)_H$ Symmetry breaking as origin of EWSB

- Classically Conformal SM Extension: G_{SM} × U(1)_H with hidden sector U(1)_H containing only a +2 gauge charged scalar Φ.
- CW mechanism (Coleman & Weinberg, 1973) for radiative symmetry breaking in U(1)_H sector:

$$egin{aligned} V_{\phi} &= \lambda_{\phi} \left(\Phi^{\dagger} \Phi
ight)^2 + V_{1 loop} \ &= rac{1}{4} \lambda_{\phi} \phi^4 + rac{eta_{\phi}}{8} \phi^4 \left(ln \left[rac{\phi^2}{v_{\phi}^2}
ight] - rac{25}{6}
ight), ext{ where } \phi &= \sqrt{2} ext{Re} \left[\Phi
ight] \end{aligned}$$

• Full scalar potential reads:

$$V = \lambda_{h} \left(H^{\dagger} H \right)^{2} - \left[\lambda_{mix} \left(H^{\dagger} H \right) \left(\Phi^{\dagger} \Phi \right) \right] + \lambda_{\phi} \left(\Phi^{\dagger} \Phi \right)^{2} + V_{1 loop}$$

Coleman-Weinberg Mechanism Radiative $U(1)_H$ Symmetry breaking as origin of EWSB

- Radiative symmetry breaking in $U(1)_H$ sector at $\langle \phi \rangle = v_{\phi}$ generates negative SM Higgs mass squared term, driving EW symmetry breaking.
- Obtain and diagonalize M_{sq} to find eigenstate mixing:

$$h = h_1 \cos(\theta) + h_2 \sin(\theta)$$

$$\phi = -h_1 \sin(\theta) + h_2 \cos(\theta)$$

We set
$$M_{h_1} > 2M_{h_2}, \theta \ll 1 \Rightarrow h \sim h_1, \phi \sim h_2$$

• Coupling analysis reveals strongly suppressed $g_{h_1h_2h_2}$ in conformal system vs. conventional system.

(日)

Coupling Analysis

• Express potentials in terms of observables and extract couplings.

For $M_{h_1}>2M_{h_2}, \theta\ll 1$, conventional system coupling goes as

$$egin{aligned} g_{h_1h_2h_2}&\simeq-rac{M_{h_1}^2}{2v_\phi}\left(1+2rac{M_{h_2}^2}{M_{h_1}^2}
ight) heta & ext{for} & heta\llrac{v_h}{v_\phi}, \ g_{h_1h_2h_2}&\simeqrac{M_{h_1}^2}{2v_h}\left(1+2rac{M_{h_2}^2}{M_{h_1}^2}
ight) heta^2 & ext{for} &rac{v_h}{v_\phi}\lesssim heta, \end{aligned}$$

while conformal system coupling goes as

$$g_{h_1h_2h_2}\simeq -\frac{M_{h_2}^2}{2v_h}\left(1-4\frac{M_{h_2}^2}{M_{h_1}^2}\right)\theta^2.$$

• Cancellation of lower order θ terms and unique CW structure leads to coupling suppression.

Higgs Phenomenology at ILC

- Gray regions excluded by LHC (ATLAS, 2020) and LEP-II (for $M_{h_2} = 25$ GeV) (LEP-II, 2003)
- Prospective ILC search reach in blue for anomalous Higgs decay (Liu, Wang, Zhang, 2017) and red for anomalous coupling (Barklow et. al., 2018).

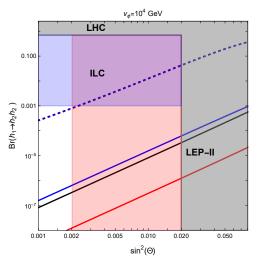


Figure: Conventional (dashed) and Conformal (solid) branching ratios. $M_{h_2} = 10$ (red), 25 (black), and 50 (blue) GeV.

$U(1)_H$ vector boson Dark Matter

- Consider Z', the gauge boson of U(1)_H, as DM candidate
- Reproduce observed $\Omega_{DM}h^2 = 0.12$ (Planck 2018) with $\langle \sigma v_{rel} \rangle \sim 1$ pb

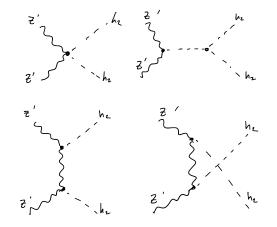
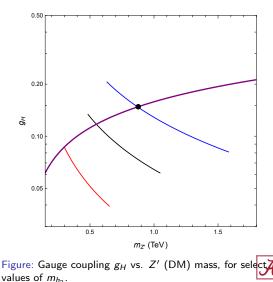



Figure: $Z'Z' \rightarrow h_2h_2$ DM annihilation process diagrams

Complementarity between $U(1)_H$ vector boson Dark Matter and ILC Higgs Phenomenology

- Red, Black, Blue lines correspond to non-excluded parameter space for θ below LEP-II bounds for M_{h2} = 10 (red), 25 (black), and 50 (blue) GeV, respectively.
- $\langle \sigma v_{rel} \rangle \sim 1 \text{pb}$ satisfied along purple curve. Conformal model reproduces $\Omega_{DM} h^2 = 0.12 \text{ at}$ intersection points.

・ロト ・ 同ト ・ ヨト ・ ヨト

$U(1)_H$ Higgs sector First Order Phase Transition (FOPT)

- Z' DM benchmark case $M_{h_2} = 50$ GeV exhibits FOPT
- FOPT at finite T may source Gravitational Waves (GW) from bubble collisions, depending on model parameters

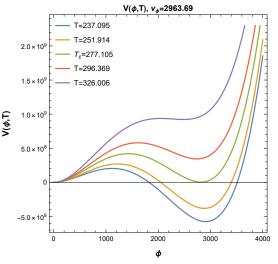


Figure: $V(\phi, T)$ for $M_{h_2} = 50$ GeV case

GW signals

- Peak amplitude of $h^2\Omega\sim 10^{-11}$ at frequency $f\sim 10^{-4}$ Hz
- Signals fall within range of future U-DECIGO AND μ-ARES search reach



Figure: $h^2\Omega(f)$ for the $M_{h_2} = 50$ GeV case

Summary

- Classical conformal structure & Coleman-Weinberg mechanism as origin of EW Symmetry breaking.
 - ► Radiative symmetry breaking in U(1)_H sector induces negative SM Higgs mass term, driving EW symmetry breaking
- Higgs Phenomenology greatly affected by unique conformal potential
 - ▶ Models distinguishable by precision measurement of anomalous Higgs coupling alongside (non-)observation of anomalous Higgs decay $h_1 \rightarrow h_2 h_2 \rightarrow b \bar{b} b \bar{b}$ at future e^+e^- or $\mu^+\mu^-$ colliders.
- With Z' as DM candidate, $\Omega_{DM}h^2 = 0.12$ can be satisfied for appropriate choice of M_{h_2} .
- GW signal from Vector DM Model with $M_{h_1} = 50$ GeV from FOPT with signal within U-DECIGO and μ -ARES search regions
- Complementarity among Higgs Pheno., Z' DM, and GW signals good for future detection prospects of conformal models

3

(日)