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Movitations

The Standard Model

Do particles g < 1 exist ?

Dark Matter Candidate Kinetic Mixing

Test of GUT 21ecm Cosmology

Interesting Phenomena

Quark: g = 2/3,1/3
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Two Kinds of Millicharged Particles

Pure mCP Kinetic Mixing mCP
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Kinetic Mixing Millicharged Particle
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Kinetic Mixing Millicharged Particle
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Kinetic Mixing Millicharged Particle

Massless Dark Photon
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Kinetic Mixing Millicharged Particle

Massless Dark Photon
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Millicharged Particle Detections

SM SM ¥ ¥

A
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o L SM SM
Stellar/Supernova o Dark Matter Direct Detection,
Energy Loss 1Ss1ng viomentum CMB Anisotropy,
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Millicharged Particle Detections

SM M ¥ Y

1. Other methods to detect mCPs

2. Distinguish the pure and kinetic mixing mCPs

o L SM SM
Stellar/Supernova i Dark Matter Direct Detection,
Energy Loss Missing Momentum CMB Anisotropy.
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Cosmic Millicharge Background

Star as the Lab Universe as the Lab

TSun G Trh > TBBN ~ 5 MeV

Tap ~ 3keV

T ~
RG 200 keV Trh < :0111/14f it 1016 GeV
TSN ~ MeV
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Cosmic Millicharge Background

Stars are good labs.

Star as the Lab Universe as the Lab

The universe 1s even better. .
C

TRG ~ 200 keV
TSN ~ MeV

Tih < pie~ 101°GeV
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Pure Millicharged Background

k7 Ty, > 100 GeV

Freeze-1n
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SM + SM < Y+ X. Gan, Tsai, 2023

Stability: Z, Symmetry!
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Pure Millicharged Background

Freeze-1n
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mCP Overproduced }
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SM + SM < Y+ X. Gan, Tsai, 2023
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Kinetic Mixing Millicharged Background
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Kinetic Mixing Millicharged Background

AN, Constraints for mCP with Dark Photon
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Vogel, Redondo 2013
Freeze-1n Adshead, Ralegankar, Shelton 2022
X. Gan, Tsa1 2023
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Test Low Reheating Temperature

QO h%: Ty, = 10 MeV

mCP Overproduced }

my |GeV

X. Gan, Tsai, 2023
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Test Low Reheating Temperature

Overproduction Constraints for “Pure” mCP ANy Constraints for mCP with Dark Photon

— Tin > 100 GeV

e Ty, = 100 GeV
Tin = 10GeV
Tin = 1GeV

e Ty = 100 MeV

Accelerator

— T 2 1GeV
— T = 100 MeV
— Tin = 10 MeV
— Tin = 5MeV

Pure mCPs Kinetic Mixing mCPs
X. Gan, Tsa1, 2023
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Test Low Reheating Temperature

Reheating Targets for “Pure” mCP Reheating Targets for mCP with Dark Photon

Accelerator
SUBME'T

1 effects on ANqg

T, effects on overproduction and CMDB
10—1 ]00 10—1 100
my [GeV] my [GeV]

Pure mCPs Kinetic Mixing mCPs
X. Gan, Tsa1, 2023
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Test Low Reheating Temperature

Reheating Targets for “Pure” mCP Reheating Targets for mCP with Dark Photon
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Test Low Reheating Temperature

" mCP

Reheating Tareets for “Pure”
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Reheating Targets for mCP with Dark Photon
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Cosmological Distinguish of Two mCPs

Positive Definiteness Lower Bound of g,
(1) -1 H 84 = €4y
(2) No Dark Thermalization

n;q<dv>)()?—>A’A’ < H

X. Gan, Tsa1, 2023
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Cosmological Distinguish of Two mCPs

Positive Detiniteness Lower Bound of g,
(1) e<1 M
(2) No Dark Thermalization
€q
4 e R e
% (oV) y7—A'A Two conditions cannot

be satisfied at the same time

X. Gan, Tsa1, 2023
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Target Regions

SUBMET)

Kinetic Mixing mCPs (Planck 2018)
Low 1., (CMB-54)

Y&  Kinetic Mixing mCPs (DD)
X. Gan, Tsa1, 2023
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Summary
Motivation

Millicharged particles can easily emerge from kinetic mixing, become the dark matter candidate, serve as a test of GUT, and have
many interesting phenomena. They also strongly affect the 21cm signal, which provides convincing explanations for the 21cm
anomalies.

Two Kinds of Millicharged Particle

Pure and kinetic mixing millicharged particles.

Millicharged Particle Detections

Star as lab versus Universe as lab

Test Low Reheating Temperature

When 1, < m,, mCP production 1s exponentially suppressed. Given this, the discovery of low-mass mCPs determines the low
reheating temperature. This fact motivates the collider and fixed-target searches of mCPs, such as milliQan, FORMOSA, SUBMET.

Cosmological Distinguishment of Two Millicharged Particles

We specity the regions in the mCP parameter space where kinetic mixing mCPs can never mimic pure mCPs given the dark
thermalizations. Then, we specity the target regions to detect pure and kinetic mixing mCPs and detect low Trh.
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Dirac Quantization

If magnetic monopole (0,g,,) exits:

Dirac-Schwinger-Zwanziger (€spr V)

Quantization Condition: ] Cory* Sy = ml2
For arbitrary two particles
(¢, g;) and (eja gj)a
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Forward Physics Facility:
FORMOSA

FORMOSA-I:
0.2m X 0.2m X 4m Detector
at UJ-12/TJ-12

FORMOSA-II:
Im X Im X 4m Detector
at UJ-12/TJ-12

Foroughi-Abari, Kling, Tsa1 2020
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Summary of the mCP Detections

Both Pure and
Kinetic Mixing mCPs
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Detect the Pure mCP

Excluded by kinetic mixing mCP’s AN, ¢ bound,
but unexcluded by pure mCP’s overproducgion bound
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X. Gan, Tsai, 2023
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Detect the Pure mCP

* Target Region

NN [xcluded by kinetic mixing mCP’s AN, ¢r bound,
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but unexcluded by pure mCP’s overproducgion bound

Dark Thermalization
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Detect the Pure mCP

* Target Region

Excluded by kinetic mixing mCP’s AN, ¢ bound,
but unexcluded by pure mCP’s overproducgion bound

Dark Thermalization

e< ]| <= g,>eq,

A0V ) aa > H

m. [GeV]

X. Gan, Tsai, 2023
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