

Cosmic Millicharge Background and Reheating Probes

DPF-Pheno 2024

Speaker: Xucheng Gan

PhD, NYU Physics Department

2308.07951 with Yu-Dai Tsai (UC Irvine)

Quark: q = 2/3, 1/3

Xucheng Gan @ NYU CCPP

Movitations

Do particles $q \ll 1$ exist?

Dark Matter Candidate

Kinetic Mixing

21cm Cosmology

Interesting Phenomena

Kinetic Mixing Millicharged Particle

Kinetic Mixing Millicharged Particle Ψ, Ψ'

Bob Holdom 1985

Kinetic Mixing Millicharged Particle

Massless Dark Photon

Kinetic Mixing Millicharged Particle

Massless Dark Photon

mCP depletion: $\chi \overline{\chi} \to A'A'$

 $q_{\chi} = \epsilon g_d / e$

Energy Loss Xucheng Gan @ NYU CCPP

Missing Momentum

DPF - Pheon 2024

Dark Matter Direct Detection, CMB Anisotropy, Beam Dump

SM

1. Other methods to detect mCPs

2. Distinguish the pure and kinetic mixing mCPs

Stellar/Supernova Energy Loss Xucheng Gan @ NYU CCPP

Missing Momentum

SM

SM

DPF - Pheon 2024

Dark Matter Direct Detection, CMB Anisotropy, Beam Dump

Cosmic Millicharge Background

Star as the Lab

Xucheng Gan @ NYU CCPP

Universe as the Lab

$T_{\rm rh} > T_{\rm BBN} \sim 5 \,{\rm MeV}$

Kawasaki, Kohri, Sugiyama, 2000

 $T_{\rm rh} < \rho_{\rm inf}^{1/4} \sim 10^{16} \,{\rm GeV}$ ^Pinf

Planck 2018, 1807.06211

DPF - Pheon 2024

Star as the Lab

Stars are good labs. The universe is even better.

 $T_{\rm RG} \sim 200 \, \rm keV$ $T_{\rm SN} \sim {\rm MeV}$

Xucheng Gan @ NYU CCPP

 $T_{\rm rh} < \rho_{\rm inf}^{1/4} \sim 10^{16} \,{\rm GeV}$ ^Pinf

Planck 2018, 1807.06211

Pure Millicharged Background

Freeze-in

Freeze-out

$SM + SM \leftrightarrow \chi + \bar{\chi}$

Xucheng Gan @ NYU CCPP

X. Gan, Tsai, 2023

Stability: \mathbb{Z}_2 Symmetry!

Pure Millicharged Background

Freeze-in

Freeze-out

$SM + SM \leftrightarrow \chi + \bar{\chi}$

Xucheng Gan @ NYU CCPP

X. Gan, Tsai, 2023

Stability: \mathbb{Z}_2 Symmetry!

Kinetic Mixing Millicharged Background

$\Delta N_{\rm eff}$ Constraints for mCP with Dark Photon

Xucheng Gan @ NYU CCPP

Pure mCPs

Xucheng Gan @ NYU CCPP

 $\Delta N_{\rm eff}$ Constraints for mCP with Dark Photon

Kinetic Mixing mCPs

X. Gan, Tsai, 2023

Xucheng Gan @ NYU CCPP

Reheating Targets for mCP with Dark Photon

Kinetic Mixing mCPs

X. Gan, Tsai, 2023

Xucheng Gan @ NYU CCPP

Reheating Targets for "Pure" mCP

Xucheng Gan @ NYU CCPP

Reheating Targets for mCP with Dark Photon

X. Gan, Tsai, 2023

Cosmological Distinguish of Two mCPs

Xucheng Gan @ NYU CCPP

X. Gan, Tsai, 2023

Cosmological Distinguish of Two mCPs Lower Bound of g_d $\epsilon < 1$ $g_d > eq_{\gamma}$ No Dark Thermalization $n_{\chi}^{eq} \langle \sigma v \rangle_{\chi \overline{\chi} \to A'A'} < H$ Two conditions cannot be satisfied at the same time

Xucheng Gan @ NYU CCPP

X. Gan, Tsai, 2023

X. Gan, Tsai, 2023

Xucheng Gan @ NYU CCPP

Target Regions

Pure mCPs

Low T_{rh}

Kinetic Mixing mCPs (Planck 2018) Low T_{rh} (CMB-S4)

Kinetic Mixing mCPs (DD)

Summary

Motivation

Millicharged particles can easily emerge from kinetic mixing, become the dark matter candidate, serve as a test of GUT, and have many interesting phenomena. They also strongly affect the 21cm signal, which provides convincing explanations for the 21cm anomalies.

Two Kinds of Millicharged Particle Pure and kinetic mixing millicharged particles.

Millicharged Particle Detections Star as lab versus Universe as lab

Test Low Reheating Temperature

When $T_{rh} < m_{\gamma}$, mCP production is exponentially suppressed. Given this, the discovery of low-mass mCPs determines the low reheating temperature. This fact motivates the collider and fixed-target searches of mCPs, such as milliQan, FORMOSA, SUBMET.

Cosmological Distinguishment of Two Millicharged Particles

We specify the regions in the mCP parameter space where kinetic mixing mCPs can never mimic pure mCPs given the dark thermalizations. Then, we specify the target regions to detect pure and kinetic mixing mCPs and detect low Trh.

Xucheng Gan @ NYU CCPP

Dirac-Schwinger-Zwanziger **Quantization Condition:**

For arbitrary two particles (e_i, g_i) and (e_i, g_i) , $e_i g_i - e_j g_i = N/2, N \in \mathbb{N}.$

Xucheng Gan @ NYU CCPP

Dirac Quantization

 $(e_{SM}, 0)$

If magnetic monopole $(0,g_M)$ exits:

 $e_{SM} \cdot g_M = m/2$

 $g_M \cdot q_{\chi} = n/2$

$q_{\chi} = \frac{n}{m} e_{SM} \in \mathbb{Q}$

Forward Physics Facility: FORMOSA

Foroughi-Abari, Kling, Tsai 2020

Xucheng Gan @ NYU CCPP

FORMOSA-I: $0.2m \times 0.2m \times 4m$ Detector at UJ-12/TJ-12

FORMOSA-II: $1 \text{m} \times 1 \text{m} \times 4 \text{m}$ Detector at UJ-12/TJ-12

Both Pure and Kinetic Mixing mCPs

Only Kinetic Mixing mCPs

Xucheng Gan @ NYU CCPP

Detect the Pure mCP

X. Gan, Tsai, 2023

Xucheng Gan @ NYU CCPP

Target Region

Excluded by kinetic mixing mCP's ΔN_{eff} bound, but unexcluded by pure mCP's overproducgion bound

10²

Detect the Pure mCP

X. Gan, Tsai, 2023

Xucheng Gan @ NYU CCPP

Target Region

Excluded by kinetic mixing mCP's ΔN_{eff} bound, but unexcluded by pure mCP's overproducgion bound

Dark Thermalization

 $\epsilon < 1 \iff g_d >$ $n_{\chi}\langle \sigma v \rangle_{\chi \overline{\chi} \to A' A'} > H$

 10^{2}

Detect the Pure mCP

X. Gan, Tsai, 2023

Xucheng Gan @ NYU CCPP

Target Region

Excluded by kinetic mixing mCP's ΔN_{eff} bound, but unexcluded by pure mCP's overproducgion bound

Dark Thermalization

 $\epsilon < 1 \iff g_d >$ $n_{\chi}\langle\sigma\nu\rangle_{\chi\overline{\chi}\to A'A'}>H$

 10^{2}

