Cosmic Muon Explorer

Yuvaraj Elangovan (On behalf of the Group) University of Pittsburgh <u>yue8@pitt.edu</u> 05/13/2024

Objective

This Projects aim is to design and develop handheld, cost-effective, and low-power Muon Detectors for Experiments and Science Outreach

Overview

Phase 1 (Mumbai, India)

- 2 Fold Plastic Scintillator Coincidence
- Simple Readout
- Coarse Resolution
- No Temp Compensation

Phase2 (Pittsburgh, US)

- 2 Fold
- Sophisticated Readout(TIA etc..)
- Fine resolution (pe level)
- Temp Compensated
- Battery Operated

Detector Overview

Detector 3D Model

Fiber & Scintillator

Detector Interface with SiPM

Reflector Packing

Black Sheet Packing

Black Tape Packing

2 Scintillator Stack

SiPM and WLS Fiber

Silicon Photomultiplier

2.4 mm

Hamamatsu S13360-2050VE

Photo Sensitive Area	2x2mm
Pixel Pitch	50um
Number of Pixels	1584

Kuraray Wavelength Shifting (WLS) Fiber

Before Polish

After Polish

SiPM-Fiber Adapter

SiPM Side

Description		Emission		Absorption	Att.Leng.2)	Characteristics
Description	Color	Spectra	Peak[nm]	Peak[nm]	[m]	Characteristics
Y-11(200)	green		476	430	>3.5	Blue to Green Shifter (K-27 formulation) Long Attenuation Length and High Light Yield

Lapping Sheets

Readout Electronics

DAQ Mother Board

Frontend

DAQ Peripherals

SiPM Bias Supply (54V)

Serial Bluetooth Terminal App

2:11		🕲 🔐 💎 🗤 🖬 🛛 26%									
≡	Term	inal		60- i	<u> </u>	s :					
7.19 2	96.85 0	.00									
0.02 0.18 8 8 4 23.80 97806.00 97802.00 29											
7.62 297.53 0.00											
0.07 0.07 8 13 4 23.80 97812.00 97805.00 2											
97.27 0 19 0	296.67	1 22 8	0 0791 [.]	o uu a.	78070	0 207					
27 29	7450(າ 23.0 ງດ	0 5701.	2.00 5	/00/.0	0 257.					
0.13 0	.12 4 8	2 23.8	0 9781	0.00 9 [.]	7816.0	0 296.					
85 296.33 0.00											
0.16 0.06 5 10 1 23.80 97814.00 97813.00 296											
.85 297.10 0.00											
0.14 0	0.17 4 7	123.8	0 97810	0.00 97	7810.00	0 296.					
50 29	7.36 0.0		00.07	215 00	07010	~~ ~~					
0.050	0.23 9 I	0 4 23	.80 978	315.00	97812	.00 29					
0.252	0418	1.00 1.23 Bi	<u>1 9780</u>	7 00 9 [.]	7817 0	0 296					
16 296	5.59 0.0	0	5 5760	/.00 5	/01/.01	0 200.					
0.10 0	.17 2 9	1 23.80	97814	1.00 97	7808.0	0 297.					
10 297	7.02 0.0	00									
0.19 0.05 4 12 2 23.80 97807.00 97814.00 29											
6.93 2	97.27 (0.00									
0.00 (0.03 0 4	4 0 23.	80 978	813.00	97809	.00 29					
7.19 29	97.02 0	.00			0701	- 00 2					
96.67	296 67 296 67	25 5 23 0 00	5.80.97	809.00	9/81	5.00 2					
50.07	250.07	0.00									
10Sec	1Min	15Min	30Min	1Hr	L6	L7					
20mV	50mV	100mV	200mV	Data0	Datal	Data2					
						>					

Backend

-JAO MINGW64 /d/Yuvaraj/Projects/Muon_detector/WCW_Readout python muon_readout.py Enter COM PORT NO: 3 **Run Control** Connected to COM3 at 115200 baud. Enter the Signal Threshold(20,50,100,200)mV : 100 Enter the Monitoring Period(10,60,900,1800,3600)Seconds:60 Enter the Data_Type(0,1,2):1 2024-05-09-12-34-41 0.28 0.24 84 150 0 22.60 96952.00 96949.00 371.05 371.65 89.78 2024-05-09-12-35-42 0.25 0.26 95 145 0 22.70 96945.00 96952.00 370.96 370.36 89.66 2024-05-09-12-36-42 0.18 0.21 82 118 0 22.70 96954.00 96952.00 370.44 370.53 89.53 2024-05-09-12-37-42 0.22 0.15 84 146 0 22.60 96950.00 96943.00 371.05 370.61 89.84 2024-05-09-12-38-42 0.12 0.12 88 115 0 22.70 96960.00 96959.00 370.18 369.84 90.14 2024-05-09-12-39-42 0.32 0.27 94 135 0 22.70 96954.00 96955.00 370.27 370.87 89.44 2024-05-09-12-40-42 0.16 0.24 106 120 0 22.80 96956.00 96955.00 370.61 370.18 89.86 2024-05-09-12-41-42 0.17 0.25 94 116 0 22.80 96955.00 96950.00 370.27 370.27 89.74

Results Part 1

Results Part 2 : Source Testing

Results Part 3: Muon Flux under Tunnel

Results Part 4 : Angular Distribution

Prof. Danko, Istvan Zsolt, Instruction Lab

Detector Assembly to keep Detectors 50cm Apart

Phase 2:

Stack up View of Detector Assembly

Readout Schematic

Microcontroller

OLED

Memory

GPS

TPH

WIFI

Phase 2 : Applications

Background Measurement

Educational Outreach

Balloon Flight

Cargo Scanning

DOI:10.3390/instruments7010013

Time Line

Conclusion

Phase 1 : Completed

Learnings:

- Temperature Compensation
- Calibration
- Trigger on Photo Electron level Threshold

Phase 2 : Started

- Design Specification
- Scintillator Selection
- Budgeting

Inspiration and Credits

MIT Cosmic Watch Program

Open Gamma Detector

http://www.cosmicwatch.lns.mit.edu/

Special Thanks

Dhanalakshmi Krishnamurthy (On-field Measurements)

Team :

Phase 1 :

Tata Institute of Fundamental Research, Colaba, Mumbai, India.

Yuvaraj Elangovan, Dr. Satyanarayana Bheesette, Shashwat Kakkad, Raj Shah, Suresh Upadhya, Ravindra Raghunath Shinde, Mandar Saraf. Acknowledgment: Santhosh Chavan, Darshana Gonji, Vishal Asgolkar.

Phase 2:

University of Pittsburgh, Pittsburgh, PA, US.

Possible Team (Yuvaraj Elangovan, **Mo Kyle, Brent Clelland**, Surukuchi Pranava Teja, Tae Min Hong) Looking for **Time and Funding...**

Thank You