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Introduction

e Autoencoders for anomaly detection S ave
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e Machine learning at L1

Decision tree autoencoder

e Novel training method

e Novel latent-spaceless design for FPGA

Physics & FPGA results

e Exotic decay of Higgs to pseudoscalars to yy bb
e ‘| HC anomaly detection” dataset
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We present an interpretable implementation of the autoencoding algorithm,

used as an anomaly detector, built with a forest of deep decision trees on
FPGA, field programmable gate arrays. Scenarios at the Large Hadron Collider
at CERN are considered, for which the autoencoder is trained using known
physical processes of the Standard Model. The design is then deployed in real-
time trigger systems for anomaly detection of unknown physical processes,
such as the detection of rare exotic decays of the Higgs boson. The inference is
made with a latency value of 30 ns at percent-level resource usage using the
Xilinx Virtex UltraScale+ VU9P FPGA. Our method offers anomaly detection at
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Abstract

We present a novel implementation of the artificial intelligence autoencoding algorithm, used
as an ultrafast and ultraefficient anomaly detector, built with a forest of deep decision trees on
FPGA, field programmable gate arrays. Scenarios at the Large Hadron Collider at CERN are
considered, for which the autoencoder is trained using known physical processes of the Standard
Model. The design is then deployed in real-time trigger systems for anomaly detection of new
unknown physical processes, such as the detection of exotic Higgs decays, on events that fail
conventional threshold-based algorithms. The inference is made within a latency value of 25 ns,
the time between successive collisions at the Large Hadron Collider, at percent-level resource
usage. Our method offers anomaly detection at the lowest latency values for edge Al users with
tight resource constraints.

Keywords: Data processing methods, Data reduction methods, Digital electronic circuits, Trigger
algorithms, and Trigger concepts and systems (hardware and software).
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low latency values for edge Al users with resource constraints.

Unsupervised artificial intelligence (Al) algorithms enable signal-
agnostic searches beyond the Standard Model (BSM) physics at the
Large Hadron Collider (LHC) at CERN'. The LHC is the highest energy
proton and heavy ion collider that is designed to discover the Higgs
boson** and study its properties*” as well as to probe the unknown and
undiscovered BSM physics (see, e.g.,*®). Due to the lack of signs of
BSM in the collected data despite the plethora of searches conducted
at the LHC, dedicated studies look for rare BSM events that are even
more difficult to parse among the mountain of ordinary Standard
Model processes’ . An active area of Al research in high energy phy-
sics is in using autoencoders for anomaly detection, much of which
provides methods to find rare and unanticipated BSM physics. Much of
the existing literature, mostly using neural network-based approaches,
focuses on identifying BSM physics in already collected data'* 7. Such
ideas have started to produce experimental results on the analysis of
data collected at the LHC™"7*, A related but separate endeavor, which is
the subject of this paper, is enabling the identification of rare and
anomalous data on the real-time trigger path for more detailed
investigation offline.

The LHC offers an environment with an abundance of data at a 40
MHz collision rate, corresponding to the 25 ns time period between
successive collisions. The real-time trigger path of the ATLAS and CMS
experiments”’®, e.g., processes data using custom electronics using
field programmable gate arrays (FPGA) followed by software trigger

algorithms executed on a computing farm. The first-level FPGA portion
of the trigger system accepts between 100 kHz to 1 MHz of collisions,
discarding the remaining=99% of the collisions. Therefore, it is
essential to discovery that the FPGA-based trigger system is capable of
triggering potential BSM events. A previous study aimed at LHC data
has shown that an anomaly detector based on neural networks can be
implemented on FPGA with latency values between 80 to 1480 ns,
depending on the design”’.

In this paper, we present an interpretable implementation of an
autoencoder using deep decision trees that make inferences in 30 ns.
As discussed previously’®”’, decision tree designs depend only on
threshold comparisons resulting in fast and efficient FPGA imple-
mentation with minimal reliance on digital signal processors. We train
the autoencoder on known Standard Model (SM) processes to help
trigger the rare events that may include BSM.

In scenarios for which a specific BSM model is targeted and its
dynamics are known, dedicated supervised training against the SM
sample, i.e, BSM-vs-SM classification, would likely outperform an
unsupervised approach of SM-only training. The physics scenarios
considered in this paper are examples to demonstrate that our auto-
encoder is able to trigger on BSM scenarios as anomalies without this
prior knowledge of the BSM specifics. Nevertheless, we consider a
benchmark where our autoencoder outperforms the existing con-
ventional cut-based algorithms.
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Anomaly detection in HEP

TM Hong

Model-agnostic detection of BSM signals

e Many anomaly detection methods have been devised and

tested on a variety of ditterent HEP problems
[https://iml-wg.github.io/HEPML-LivingReview]

e Anomaly detection in ATLAS analysis
[ATLAS-CONF-2022-045]

Event Rate = — 60 TB/s
( 'Fm? '> (\\ ‘C ) Partial
1.5 M‘B 40 MHz
Buffer
Can't analyze data that's not saved L1tigger -
e L1 triggers at ATLAS & CMS use custom o
electronics such as FPGAs to discard 99.8% ‘ = _
—— Temporary
* Implementing anomaly detection at the L1 Is
challenging and possible (this talk) HLT trigger —4 1o EEs

——  Offline

Source: http://cern.ch/twiki/pub/Atlas/TDAQSpeakersCommitteeCommonReferences/tdagFullNew201 7.0(‘



http://cern.ch/twiki/pub/Atlas/TDAQSpeakersCommitteeCommonReferences/tdaqFullNew2017.pdf
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Autoencoder
Govorkova et al., Autoencoders on field-programmable gate arrays for

° Ty p | C al |y C O n S.t r U Ct e d U S | n g real-time, unsupervised new physics detection at 40 MHz at the Large

Hadron Collider, Nature Mach. Intell. 4 (2022) 154—161
neura | N etwo r k S https://doi.org/10.1038/s42256-022-00441-3
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e Challenge to implement in pure
digital logic on FPGA

e NN example shown on right —

Input € R57

Decision tree?

l | | . k + BN Dense € R Dense € R16 Latent space ER3 Dense €R16 Dense ER32  Dense € R57

Block 1: Block 2: Block 3: Block 4: Block 5:
Conv2d (16,(3,3)) Conv2d 1 (32,(3,1)) Dense (8) Conv2d 2 (32,(3,1)) Convad 3 (16,(3,1))
RelLU RelLU Dense 1 (64) RelLU ReLU

b AvPooling (3,1) AvPooling (3,1) RelLU UpSampling (3,1) UpSampling (3,1)
. I—l aS C e r‘tal n ad Va n ‘ta e S . Flatten (64) Reshape (2,1,32) ZeroPad (0,0),(1,1) ZeroPad (1,0),(0,0)
. Block @:

Qutput:
Input 19’_(3)(1 Conv2d 4 (1,(3,3))
ZeroPadding (1,0)

technical (no multiplication) & ONK
philosophical (interpretable) S

u>.\ \\)>u7:7/ il

[/] AT 4

Extended Data Fig. 1| Network architectures. Network architecture for the DNN AE (top) and CNN AE (bottom) models. The corresponding VAE models
are derived introducing the Gaussian sampling in the latent space, for the same encoder and decoder architectures (see text).
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Autoencoder intro TM Hong

-xample: handwritten numbers

e feach it 0, 1, 2, 3, 4 with a sample (doesn’'t know about 9!)
/84 variables (8-bit) 1 variable (20 bit) /84 variables (8-bit)

300x Compress>

Detalls

* |nput-output distance is relatively small = good compression

y.

* |nput-output distance is relatively large = bad compression



Decision tree autoencoders TM Hong

Train by sampling 1d projections

e Encoding: Event = which bin it's In

Decode by returning a “reconstruction point”
e Decoding: Bin = median of the training data in bin

- 2R




Decision tree autoencoders TM Hong

How does this detect anomalies?
e Define: Distance between input — output = anomaly score

e Non-anomaly e Anomaly
e |nput is similar to training data * |nput is not similar to training data
e Will likely land in a small bin > close o Will likely land in a large bin =
to the reconstruction point far from the reconstruction point

Y

_____..________I.L_:




D=8, N;ins=l1|69 -l
R B
» more bins
Anomaly score M Y
- - S99 Closer to 0 =
* Feed back In the training sample £ | with more bing | Max deptt
e Should be near 0, like Etmiss resolution %02 — D=4
[0) e D=6
>
i D=8
0.1
% 50 100750

Anomaly score A
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Latent spaceless implementation
e Closer look at what it means to encode

=k o
P
oo g<_SAA.
__________ o= ,9.52'30 \
-n-.-n-cn-gslo .
i N\

Incoming £|> £[> Encode: £[> Decode bin 3:
heart return bin 3 return (5,4)

e Skip the encoding & decoding

ig%‘v,
oi e o}?’-:u?gug-.-----
""""""" s’ Cw
-n-.-ﬂ-o‘l-gsf .
, N &
B O

Incoming > Encode is Decode:
heart return (5,4)
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Inputs

e Sample
e MadGraph5_aMC 2.9.5
e Hadron'n+Shower: Pythia8
e Detector: Delphes 3.5.0, CMS

e \/ariables
e 8 inputs: jets, photons, AR

Results

e Compare
e vs. 3 kHz Run-2 ATLAS rate

e Better

e 3x gain in signal

Norm. events / 2 GeV

Norm. events / 0.5 GeV

B s™m P, for j1
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SM <N forj2
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\Works wel Distribution ROC curve
. x107° . 1
e Physics (plots) : s pataset. &
.S Go'vorkova etal., E/ §
* FPGA (table) So2f o 8202 | 5 0
[ Method: §
g’ ZI;X :ft;r;/:fi-=3o 8 1 0‘2 DS: Govorkova et al.
i Max dlapth Ded = Method: fwX AE V=56
0.1 %) |:|h°—> T
1073 [JLQ— bt
. rih'> v
Comparison _ A4
O.l. AR e 10_4......|...|...|...
20 30 40 50 60 0 02 04 06 0.8 1
® H|S4m| NN-AE Anomaly score A Signal efficiency (TPR)

[Nature Mach. Intell. 4 (2022) 154-161]

* Physics: comparable AUC

e FPGA results > | Clock speed | 200 MHz 200 MHz
Latency 80 ns 30 ns <
Interval 5 ns 5 ns
FF 0.5% 0.6%
LUT 3% 9%
DSP 1% 0.8%
BRAM 0.3% 0
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Decision tree-based autoencoder

e New training method by sampling, it's density estimation

e More transparent (to me) than neural network-based designs
e Can do problems in high energy physics (3 - 50 variables)
e Competitive performance vs. hls4dml|

—fficient iImplementation

¢ | atent space-less design where encoding = decoding
e Performance on Xilinx Virtex Ultrascale+ VU9P

» O(1)% level resource usage
» Fast at 30 ns latency

» Try it yourself with the provided testbench & IP available online
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Then what

e \What are we going to do with the events that we save?

» Everyone is saving rare events that are uncategorized. Who's going to categorize
them”? CMS recently showed an event display of the most anomalous event. Will
we go through one-by-one to try to guess at the physics?

» There are ideas, but more needed

What about benchmarks?

e By construction, it's supposed to pick up events that we don't know
about. But to benchmark it, we choose models that we know about.
Is this a contradiction”? How do we avoid it? Who gets to choose”?

e How much trigger bandwidth do we devote to it if we don't know
what may be in it”
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Autoencoder intro TM Hong

-xample: handwritten numbers

¢ [each It about the number 4

784 variables (8-bit) Corresponding data set
. age  Pixel | = Pixel 2 s I;)g(gl F;)S(jrl
500k

Detalls

e Fach pixel in the data set are unrelated to each other




Logic flow

¢ | eft-to-right data flow (see right)
e Realized that we can bypass the latent space!

e Encoding = Decoding

X ) .
Distance
Processor
Data X %0 sum | —  Data
D ‘I: . | in Deep Decision Tree Engine,
e a S anomaly detector version _
l DDTE-ad, A= 2y

e Parallel computing

® [REE ENGINES eval. in parallel

DDTE-ad, |

|14 Distance
—1 Fn., Ao

e All combinatoric logic, so no clocking
between steps = fast

fork =0 .. K-1 trees

e Mostly comparisons = fast . E——
e No multiplication = fast A o

e Technical info in backup & t t t

Input data Encoder Encoded data Decoder Intermediate Metric
[2304.03836] output
: Shown conceptually as
actual encode-decode
occur simultaneously.

y.
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FW testbench w/ IP available

http://d-scholarship.pitt.edu/45784/

Autoencoder Firmware Testbench Tutorial

Please download Vivado 2019.2 at the following link, if you do not currently have it:
https://www.xilinx.com/support/download/index.html/content/xilinx/en/downloadNav/vivado-design-

tools/archive.html

Before Beginning

Before beginning, please make sure that you have (and know the location of) the autoencoder IP
folder, and the VHDL testbench files:

nName vate moariea Iype size
autoencoder8var_ip 2/7 File folder
tb_vhd_files 2/ File folder

Creating New Project in Vivado

Open Vivado 2019.2 and select “create new Project.” On the following pop-up, select “next,” and
you will be prompted to name the project. Name the project as you wish and choose a location to store
it. Keep clicking next until you reach a page that prompts you to select the part/ board. For this tutorial,
we will be using the Virtex UltraScale+ VCU118 board. After you have selected your part or board,
keeping clicking “next” until you have reached the end of the setup page.

4 New Project x
Default Part
Choose a default Xilinx part or board for your project, s
Parts Boards
Reset All Filters Update Board Repositories
Vendor: | All v | Name: Al v BoardRev: Latest v
Search: | O-veu118 v | (1 match)
Display Name: Preview  Vendor File Version ~ Part
Virtex UltraScale+ VCU118 Evaluation Platform ‘ W linccom 23 xcvu9p-figa2104-2L-e
< >

TM Hong

Screenshots in the document
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