Electroweak Baryogenesis

in the Next-to-Minimal Supersymmetric Standard Model

Kaifei Ning

5/17/2024

In collaboration with J. B. Habashi, N. Blinov, W. Chao, M. Gonzale-Alonso, J. Kozaczuk, M. Ramsey-Musolf

Model

- Next-to-Minimal SUSY - CP violation

Method

- VEV-insertion approximation
- Quantum transport equation

Results

- Baryon asymmetry
- Electric dipole moment

NMSSM:
$$W^{\text{NMSSM}} = W^{\text{MSSM}} + \lambda SH_{u}H_{d} + \frac{1}{3}\kappa S^{3} + \frac{1}{2}\beta S^{2} + \alpha S$$

NMSSM:
$$W^{\text{NMSSM}} = W^{\text{MSSM}} + \lambda SH_uH_d + \frac{1}{3}\kappa S^3 + \frac{1}{2}\beta S^2 + \alpha S$$

2

The electroweak phase transition gets strengthened with S $\lambda \langle S \rangle$ generates an effective $\mu_{\rm eff}$ resolving the μ problem

NMSSM:
$$W^{\text{NMSSM}} = W^{\text{MSSM}} + \lambda SH_uH_d + \frac{1}{3}\kappa S^3 + \frac{1}{2}\beta S^2 + \alpha S$$

The electroweak phase transition gets strengthened with S $\lambda \langle S \rangle$ generates an effective $\mu_{\rm eff}$ resolving the μ problem

Introduce more possible CP violating interactions for the baryon asymmetry.

3

NMSSM:
$$W^{\text{NMSSM}} = W^{\text{MSSM}} + \lambda SH_uH_d + \frac{1}{3}\kappa S^3 + \frac{1}{2}\beta S^2 + \alpha S$$

2

The electroweak phase transition gets strengthened with S $\lambda \langle S \rangle$ generates an effective $\mu_{\rm eff}$ resolving the μ problem

Introduce more possible CP violating interactions for the baryon asymmetry.

3

$$\mathcal{L}_{\text{soft}}^{\text{NMSSM}} = \mathcal{L}_{\text{soft}}^{\text{MSSM}} - \mu' \widetilde{H}_u \widetilde{H}_d - m_s^2 S^{\dagger} S - \left[\lambda A_{\lambda} S H_u H_d + \frac{1}{3} \kappa A_{\kappa} S^3 + \frac{1}{2} m_7^2 S^2 + m_9^3 S + \text{h.c.} \right]$$

NMSSM:
$$W^{\text{NMSSM}} = W^{\text{MSSM}} + \lambda SH_{u}H_{d} + \frac{1}{3}\kappa S^{3} + \frac{1}{2}\beta S^{2} + \alpha S$$

2

The electroweak phase transition gets strengthened with S $\lambda \langle S \rangle$ generates an effective $\mu_{\rm eff}$ resolving the μ problem

Introduce more possible CP violating interactions for the baryon asymmetry.

3

$$\mathcal{L}_{\text{soft}}^{\text{NMSSM}} = \mathcal{L}_{\text{soft}}^{\text{MSSM}} - \mu' \widetilde{H}_u \widetilde{H}_d - m_s^2 S^{\dagger} S - \left[\lambda A_{\lambda} S H_u H_d + \frac{1}{3} \kappa A_{\kappa} S^3 + \frac{1}{2} m_7^2 S^2 + m_9^3 S + \text{h.c.} \right]$$

Phase	Invariants
$\mathrm{MSSM}(\mathrm{w/o}\;\mu)$	NMSSM
$\Phi_1 = \arg\{M_1 M_2^*\}$	$\phi_0' = rg\{\kappa A_\kappa v_s^3\}$
$\Phi_2 = \arg\{M_1 M_3^*\}$	$\phi_2 = rg\{M_1\lambda v_s b_0^*\}$
$\Phi_3 = rg\{a_u a_e^*\}$	$\phi_3 = \arg\{\lambda \kappa^* v_u v_d v_s^{*2}\}$
$\Phi_4 = \arg\{a_d a_e^*\}$	$\phi_4 = \arg\{\lambda A_\lambda v_u v_d v_s\}$
$\Phi_5 = \theta_{CKM}$	$\phi_5 = \arg\{\lambda\beta^* v_u v_d v_s^*\}$
$\phi_0 = rg\{b_0 v_u v_d\}$	$\phi_6 = \arg\{m_7^2 v_s^2\}$
$\phi_1 = \arg\{M_1 a_e^*\}$	$\phi_7 = \arg\{m_9^3 v_s\}$
$\phi_9 = \arg\{M_1 \mu' b_0^*\}$	$\phi_8 = \arg\{\lambda v_u v_d \alpha^*\}$

NMSSM:
$$W^{\text{NMSSM}} = W^{\text{MSSM}} + \lambda SH_{u}H_{d} + \frac{1}{3}\kappa S^{3} + \frac{1}{2}\beta S^{2} + \alpha S$$

2

The electroweak phase transition gets strengthened with S $\lambda \langle S \rangle$ generates an effective $\mu_{\rm eff}$ resolving the μ problem

Introduce more possible CP violating interactions for the baryon asymmetry.

3

$$\mathcal{L}_{\text{soft}}^{\text{NMSSM}} = \mathcal{L}_{\text{soft}}^{\text{MSSM}} - \mu' \widetilde{H}_u \widetilde{H}_d - m_S^2 S^{\dagger} S - \left[\lambda A_{\lambda} S H_u H_d + \frac{1}{3} \kappa A_{\kappa} S^3 + \frac{1}{2} m_7^2 S^2 + m_9^3 S + \text{h.c.} \right]$$

Phase	Invariants
$\mathrm{MSSM}(\mathrm{w/o}\;\mu)$	NMSSM
$\Phi_1 = \arg\{M_1 M_2^*\}$	$\phi_0' = rg\{\kappa A_\kappa v_s^3\}$
$\Phi_2 = \arg\{M_1 M_3^*\}$	$\phi_2 = rg\{M_1\lambda v_s b_0^*\}$
$\Phi_3 = rg\{a_u a_e^*\}$	$\phi_3 = \arg\{\lambda \kappa^* v_u v_d v_s^{*2}\}$
$\Phi_4 = \arg\{a_d a_e^*\}$	$\phi_4 = \arg\{\lambda A_\lambda v_u v_d v_s\}$
$\Phi_5 = \theta_{CKM}$	$\phi_5 = \arg\{\lambda\beta^* v_u v_d v_s^*\}$
$\phi_0 = rg\{b_0 v_u v_d\}$	$\phi_6=rg\{m_7^2v_s^2\}$
$\phi_1 = \arg\{M_1 a_e^*\}$	$\phi_7=rg\{m_9^3v_s\}$
$\phi_9 = \arg\{M_1 \mu' b_0^*\}$	$\phi_8 = \arg\{\lambda v_u v_d \alpha^*\}$

Electrowe	ak Baryogenesis
CPV Int.	Phases
$ ilde{t}_L - ilde{t}_R$	$\phi_2 + \phi_0 - \phi_1 + \Phi_3$
$\tilde{H} - \tilde{B}$	$\phi_9 + \phi_0$
$ ilde{H} - ilde{W}$	$\phi_9+\phi_0-\Phi_1$
$ ilde{H} - ilde{S}$	$\phi_9-\phi_2-\phi_5$
$H_{u}^{0,+} - H_{d}^{0,-}$	$\phi_3,\phi_4,\phi_5,\phi_8,\phi_0$
$H_u^0 - S$	ϕ_3,ϕ_4,ϕ_5
$H_d^0 - S$	ϕ_3,ϕ_4,ϕ_5

NMSSM:
$$W^{\text{NMSSM}} = W^{\text{MSSM}} + \lambda SH_{u}H_{d} + \frac{1}{3}\kappa S^{3} + \frac{1}{2}\beta S^{2} + \alpha S$$

2

The electroweak phase transition gets strengthened with S $\lambda \langle S \rangle$ generates an effective $\mu_{\rm eff}$ resolving the μ problem

Introduce more possible CP violating interactions for the baryon asymmetry.

3

$$\mathcal{L}_{\text{soft}}^{\text{NMSSM}} = \mathcal{L}_{\text{soft}}^{\text{MSSM}} - \mu' \widetilde{H}_u \widetilde{H}_d - m_S^2 S^{\dagger} S - \left[\lambda A_{\lambda} S H_u H_d + \frac{1}{3} \kappa A_{\kappa} S^3 + \frac{1}{2} m_7^2 S^2 + m_9^3 S + \text{h.c.} \right]$$

Phase	Invariants
$\mathrm{MSSM}(\mathrm{w/o}\;\mu)$	NMSSM
$\Phi_1 = \arg\{M_1 M_2^*\}$	$\phi_0' = rg\{\kappa A_\kappa v_s^3\}$
$\Phi_2 = \arg\{M_1 M_3^*\}$	$\phi_2 = rg\{M_1\lambda v_s b_0^*\}$
$\Phi_3 = rg\{a_u a_e^*\}$	$\phi_3 = \arg\{\lambda \kappa^* v_u v_d v_s^{*2}\}$
$\Phi_4 = rg\{a_d a_e^*\}$	$\phi_4 = \arg\{\lambda A_\lambda v_u v_d v_s\}$
$\Phi_5 = \theta_{CKM}$	$\phi_5 = \arg\{\lambda\beta^* v_u v_d v_s^*\}$
$\phi_0 = rg\{b_0 v_u v_d\}$	$\phi_6 = \arg\{m_7^2 v_s^2\}$
$\phi_1 = \arg\{M_1 a_e^*\}$	$\phi_7=rg\{m_9^3v_s\}$
$\phi_9 = \arg\{M_1 \mu' b_0^*\}$	$\phi_8 = \arg\{\lambda v_u v_d \alpha^*\}$

ak Baryogenesis
Phases
$\phi_2 + \phi_0 - \phi_1 + \Phi_3$
$\phi_9 + \phi_0$
$\phi_9 + \phi_0 - \Phi_1$
$\phi_9-\phi_2-\phi_5$
$\phi_3,\phi_4,\phi_5,\phi_8,\phi_0$
ϕ_3,ϕ_4,ϕ_5
ϕ_3,ϕ_4,ϕ_5

NMSSM:
$$W^{\text{NMSSM}} = W^{\text{MSSM}} + \lambda SH_{u}H_{d} + \frac{1}{3}\kappa S^{3} + \frac{1}{2}\beta S^{2} + \alpha S$$

2

The electroweak phase transition gets strengthened with S $\lambda \langle S \rangle$ generates an effective $\mu_{\rm eff}$ resolving the μ problem

Introduce more possible CP violating interactions for the baryon asymmetry.

3

$$\mathcal{L}_{\text{soft}}^{\text{NMSSM}} = \mathcal{L}_{\text{soft}}^{\text{MSSM}} - \mu' \widetilde{H}_u \widetilde{H}_d - m_S^2 S^{\dagger} S - \left[\lambda A_{\lambda} S H_u H_d + \frac{1}{3} \kappa A_{\kappa} S^3 + \frac{1}{2} m_7^2 S^2 + m_9^3 S + \text{h.c.} \right]$$

Phase	Invariants
$MSSM(w/o \ \mu)$	NMSSM
$\Phi_1 = \arg\{M_1 M_2^*\}$	$\phi_0' = rg\{\kappa A_\kappa v_s^3\}$
$\Phi_2 = \arg\{M_1 M_3^*\}$	$\phi_2 = rg\{M_1\lambda v_s b_0^*\}$
$\Phi_3 = \arg\{a_u a_e^*\}$	$\phi_3 = \arg\{\lambda \kappa^* v_u v_d v_s^{*2}\}$
$\Phi_4 = \arg\{a_d a_e^*\}$	$\phi_4 = \arg\{\lambda A_\lambda v_u v_d v_s\}$
$\Phi_5 = \theta_{CKM}$	$\phi_5 = \arg\{\lambda eta^* v_u v_d v_s^*\}$
$\phi_0 = rg\{b_0 v_u v_d\}$	$\phi_6 = \arg\{m_7^2 v_s^2\}$
$\phi_1 = \arg\{M_1 a_e^*\}$	$\phi_7=rg\{m_9^3v_s\}$
$\phi_9 = \arg\{M_1 \mu' b_0^*\}$	$\phi_8 = \arg\{\lambda v_u v_d \alpha^*\}$

ak Baryogenesis
Phases
$\phi_2 + \phi_0 - \phi_1 + \Phi_3$
$\phi_9 + \phi_0$
$\phi_9 + \phi_0 - \Phi_1$
$\phi_9-\phi_2-\phi_5$
$\phi_3,\phi_4,\phi_5,\phi_8,\phi_0$
ϕ_3,ϕ_4,ϕ_5
ϕ_3,ϕ_4,ϕ_5

Electron EDM	
Digrams	Phases
$ ilde{\chi}^0$	$\Phi_1,\phi_0,\phi_2,\phi_3,\phi_5,\phi_9$
$ ilde{\chi}^{\pm}$	$\Phi_1,\phi_{f 0},\phi_2,\phi_9$
γH	$\Phi_{1,3,4},\phi_{f 0},\phi_{f 0}',\phi_{1\cdots9}$
WW	$\Phi_1,\phi_0,\phi_2,\phi_3,\phi_5,\phi_9$
WH	$\Phi_1,\phi_0,\phi_2,\phi_3,\phi_5,\phi_9$
ZH	$\Phi_1, \phi_0, \phi_0', \phi_{29}$

Credit: David E. Morrissey1, Michael J. Ramsey-Musolf, hep-ph/1206.2942

16 coupled equations for 16 distinct species of particles!

 $t, b, q, u, d, q_{1,2}, \tilde{t}, \tilde{b}, \tilde{q}, \tilde{u}, \tilde{d}, \tilde{q}_{1,2}, H_u, H_d, \tilde{H}, S$

16 coupled equations for 16 distinct species of particles!

 $t, b, q, u, d, q_{1,2}, \tilde{t}, \tilde{b}, \tilde{q}, \tilde{u}, \tilde{d}, \tilde{q}_{1,2}, H_u, H_d, \tilde{H}, S$

$$\partial_{\mu}J_{\widetilde{H}}^{\mu} = -(\Gamma_{\widetilde{H}\widetilde{W}} + \Gamma_{\widetilde{H}\widetilde{B}} + \Gamma_{\widetilde{H}\widetilde{S}})\mu_{\widetilde{H}} + S_{\widetilde{H}\widetilde{W}}^{CPV} + S_{\widetilde{H}\widetilde{B}}^{CPV} + S_{\widetilde{H}\widetilde{S}}^{CPV} - (\Gamma_{\widetilde{H}\widetilde{V}H_{u}} + \Gamma_{\widetilde{H}\widetilde{S}H_{u}})(\mu_{\widetilde{H}} - \mu_{H_{u}}) - (\Gamma_{\widetilde{H}\widetilde{V}H_{d}} + \Gamma_{\widetilde{H}\widetilde{S}H_{d}})(\mu_{\widetilde{H}} + \mu_{H_{d}}) - \Gamma_{t\widetilde{q}\widetilde{H}}^{Y}(\mu_{\widetilde{H}} + \mu_{\widetilde{q}} - \mu_{t}) - \Gamma_{\widetilde{t}q\widetilde{H}}^{Y}(\mu_{\widetilde{H}} + \mu_{q} - \mu_{\widetilde{t}})$$

16 coupled equations for 16 distinct species of particles!

 $t, b, q, u, d, q_{1,2}, \tilde{t}, \tilde{b}, \tilde{q}, \tilde{u}, \tilde{d}, \tilde{q}_{1,2}, H_u, H_d, \tilde{H}, S$

 $\partial_{\mu}J_{\widetilde{H}}^{\mu} = -(\Gamma_{\widetilde{H}\widetilde{W}} + \Gamma_{\widetilde{H}\widetilde{B}} + \Gamma_{\widetilde{H}\widetilde{S}})\mu_{\widetilde{H}} + S_{\widetilde{H}\widetilde{W}}^{CPV} + S_{\widetilde{H}\widetilde{B}}^{CPV} + S_{\widetilde{H}\widetilde{S}}^{CPV}$ $- (\Gamma_{\widetilde{H}\widetilde{V}H_{u}} + \Gamma_{\widetilde{H}\widetilde{S}H_{u}})(\mu_{\widetilde{H}} - \mu_{H_{u}}) - (\Gamma_{\widetilde{H}\widetilde{V}H_{d}} + \Gamma_{\widetilde{H}\widetilde{S}H_{d}})(\mu_{\widetilde{H}} + \mu_{H_{d}})$ $- \Gamma_{t\widetilde{q}\widetilde{H}}^{Y}(\mu_{\widetilde{H}} + \mu_{\widetilde{q}} - \mu_{t}) - \Gamma_{t\widetilde{q}\widetilde{H}}^{Y}(\mu_{\widetilde{H}} + \mu_{q} - \mu_{\widetilde{t}})$

16 coupled equations for 16 distinct species of particles!

 $t, b, q, u, d, q_{1,2}, \tilde{t}, \tilde{b}, \tilde{q}, \tilde{u}, \tilde{d}, \tilde{q}_{1,2}, H_u, H_d, \tilde{H}, S$

$$\partial_{\mu}J_{\widetilde{H}}^{\mu} = -(\Gamma_{\widetilde{H}\widetilde{W}} + \Gamma_{\widetilde{H}\widetilde{B}} + \Gamma_{\widetilde{H}\widetilde{S}})\mu_{\widetilde{H}} + S_{\widetilde{H}\widetilde{W}}^{CPV} + S_{\widetilde{H}\widetilde{B}}^{CPV} + S_{\widetilde{H}\widetilde{S}}^{CPV} - (\Gamma_{\widetilde{H}\widetilde{V}H_{u}} + \Gamma_{\widetilde{H}\widetilde{S}H_{u}})(\mu_{\widetilde{H}} - \mu_{H_{u}}) - (\Gamma_{\widetilde{H}\widetilde{V}H_{d}} + \Gamma_{\widetilde{H}\widetilde{S}H_{d}})(\mu_{\widetilde{H}} + \mu_{H_{d}}) - \Gamma_{t\widetilde{q}\widetilde{H}}^{Y}(\mu_{\widetilde{H}} + \mu_{\widetilde{q}} - \mu_{t}) - \Gamma_{\widetilde{t}q\widetilde{H}}^{Y}(\mu_{\widetilde{H}} + \mu_{q} - \mu_{\widetilde{t}})$$

16 coupled equations for 16 distinct species of particles!

 $t, b, q, u, d, q_{1,2}, \tilde{t}, \tilde{b}, \tilde{q}, \tilde{u}, \tilde{d}, \tilde{q}_{1,2}, H_u, H_d, \tilde{H}, S$

 $\partial_{\mu}J_{\widetilde{H}}^{\mu} = -(\Gamma_{\widetilde{H}\widetilde{W}} + \Gamma_{\widetilde{H}\widetilde{B}} + \Gamma_{\widetilde{H}\widetilde{S}})\mu_{\widetilde{H}} + S_{\widetilde{H}\widetilde{W}}^{CPV} + S_{\widetilde{H}\widetilde{B}}^{CPV} + S_{\widetilde{H}\widetilde{S}}^{CPV}$ $- (\Gamma_{\widetilde{H}\widetilde{V}H_{u}} + \Gamma_{\widetilde{H}\widetilde{S}H_{u}})(\mu_{\widetilde{H}} - \mu_{H_{u}}) - (\Gamma_{\widetilde{H}\widetilde{V}H_{d}} + \Gamma_{\widetilde{H}\widetilde{S}H_{d}})(\mu_{\widetilde{H}} + \mu_{H_{d}})$ $- \Gamma_{t\widetilde{q}\widetilde{H}}^{Y}(\mu_{\widetilde{H}} + \mu_{\widetilde{q}} - \mu_{t}) - \Gamma_{t\widetilde{q}\widetilde{H}}^{Y}(\mu_{\widetilde{H}} + \mu_{q} - \mu_{\widetilde{t}})$

The baryon asymmetry:

$$n_B = -3 \frac{\Gamma_{\rm ws}}{v_{\rm w}} \int_{-\infty}^0 dz \ n_{\rm left} e^{\frac{15}{4} \frac{\Gamma_{\rm ws}}{v_{\rm w}} z}$$

- $-v_{w}$: wall velocity
- Γ_{ws} : weak sphaleron rate
- $n_{\text{left}} = q + q_1 + q_2$

EDM is the most powerful probe to CP violation! It puts stringent limit on every phase that is relevant.

EDM is the most powerful probe to CP violation! It puts stringent limit on every phase that is relevant.

Normally suppressed by heavy sfermions.

EDM is the most powerful probe to CP violation! It puts stringent limit on every phase that is relevant.

Barr-Zee diagram, comparable to or even dominant over one-loop contributions.

EDM is the most powerful probe to CP violation! It puts stringent limit on every phase that is relevant.

Normally suppressed by heavy sfermions.

Barr-Zee diagram, comparable to or even dominant over one-loop contributions.

EWBG Driven by	${ m Singlino}(ilde{H}- ilde{S})$
$M_{ ilde{H}^0}, M_{ ilde{H}^\pm}$	200
$M_{ ilde{S}}$	200
$(M_{ ilde{B}},M_{ ilde{W}})$	(400, 800)
$\left(M_{H_{u}},M_{H_{d}},M_{S} ight)$	$(341,\!535,\!455)$
$(m_{h^0},m_{A^0},m_{H^+})$	(110, 569, 663)
$(m_{ ilde{\chi}^0},m_{ ilde{\chi}^\pm})$	(45, 311)
Single phase	EWBG & EDM
$ \sin(\Phi_1,\Phi_3,\Phi_4) $	>(arnothing,arnothing,arnothing)
$ \sin(\Phi_1,\Phi_3,\Phi_4) $ $ \sin(\Phi_1,\Phi_3,\Phi_4) $	> (Ø, Ø, Ø) < (0.002, 1, 1)
$egin{aligned} & \sin(\Phi_1,\Phi_3,\Phi_4) & & & & & & & & & & & & & $	$> (\varnothing, \varnothing, \varnothing)$ $< (0.002, 1, 1)$ $> (\varnothing, \varnothing, \varnothing)$
$\begin{array}{ l l l l l l l l l l l l l l l l l l$	$> (\emptyset, \emptyset, \emptyset)$ $< (0.002, 1, 1)$ $> (\emptyset, \emptyset, \emptyset)$ $< (0.002, 0.094, 1)$
$\begin{array}{ l } \sin(\Phi_1, \Phi_3, \Phi_4) \\ \sin(\Phi_1, \Phi_3, \Phi_4) \\ \sin(\phi_0, \phi_0', \phi_1) \\ \sin(\phi_0, \phi_0', \phi_1) \\ \sin(\phi_2, \phi_3, \phi_4) \\ \sin(\phi_2, \phi_3, \phi_4) \\ $	$> (\emptyset, \emptyset, \emptyset)$ $< (0.002, 1, 1)$ $> (\emptyset, \emptyset, \emptyset)$ $< (0.002, 0.094, 1)$ $> (0.004, \emptyset, 0.374)$
$\begin{array}{ } \sin(\Phi_1, \Phi_3, \Phi_4) \\ \sin(\Phi_1, \Phi_3, \Phi_4) \\ \sin(\phi_0, \phi_0', \phi_1) \\ \sin(\phi_0, \phi_0', \phi_1) \\ \sin(\phi_2, \phi_3, \phi_4) \\ \sin(\phi_2, \phi_4, \phi_4, \phi_4) \\ \sin(\phi_2, \phi_4, \phi_4, \phi_4) \\ \sin(\phi_2, \phi_4, \phi_4) \\ \sin(\phi_4, \phi_4) \\ \sin(\phi_4, \phi_4) $	$ \begin{array}{c} > (\varnothing, \varnothing, \varnothing) \\ \hline < (0.002, 1, 1) \\ > (\varnothing, \varnothing, \varnothing) \\ < (0.002, 0.094, 1) \\ > (0.004, \varnothing, 0.374) \\ < (0.005, 0.044, 0.021) \end{array} $
$\begin{aligned} & \sin(\Phi_1, \Phi_3, \Phi_4) \\ & \sin(\Phi_1, \Phi_3, \Phi_4) \\ & \sin(\phi_0, \phi_0', \phi_1) \\ & \sin(\phi_0, \phi_0', \phi_1) \\ & \sin(\phi_2, \phi_3, \phi_4) \\ & \sin(\phi_2, \phi_3, \phi_4) \\ & \sin(\phi_5, \phi_6, \phi_9) \end{aligned}$	> (Ø, Ø, Ø) < (0.002, 1, 1) > (Ø, Ø, Ø) < (0.002, 0.094, 1) > (0.004, Ø, 0.374) < (0.005, 0.044, 0.021) > (0.004, Ø, 0.004)

EWBG Driven by	${ m Singlino}(ilde{H}- ilde{S})$
$M_{ ilde{H}^0}, M_{ ilde{H}^\pm}$	200
$M_{ ilde{S}}$	200
$(M_{ ilde{B}},M_{ ilde{W}})$	(400, 800)
$\left(M_{H_u},M_{H_d},M_S ight)$	$(341,\!535,\!455)$
$(m_{h^0},m_{A^0},m_{H^+})$	(110, 569, 663)
$(m_{ ilde{\chi}^0},m_{ ilde{\chi}^\pm})$	(45, 311)
Single phase	EWBG & EDM
$ \sin(\Phi_1,\Phi_3,\Phi_4) $	>(arnothing,arnothing,arnothing)
$ \sin(\Phi_1,\Phi_3,\Phi_4) $ $ \sin(\Phi_1,\Phi_3,\Phi_4) $	>(arnothing,arnothing,arnothing) <(0.002,1,1)
$egin{aligned} & \sin(\Phi_1,\Phi_3,\Phi_4) & & & & & & & & & & & & & $	$> (\varnothing, \varnothing, \varnothing)$ $< (0.002, 1, 1)$ $> (\varnothing, \varnothing, \varnothing)$
$\begin{array}{ } \sin(\Phi_1,\Phi_3,\Phi_4) \\ \sin(\Phi_1,\Phi_3,\Phi_4) \\ \sin(\phi_0,\phi_0',\phi_1) \\ \sin(\phi_0,\phi_0',\phi_1) \\ \sin(\phi_0,\phi_0',\phi_1) \\ \end{array}$	
$\begin{array}{ } \sin(\Phi_1, \Phi_3, \Phi_4) \\ \sin(\Phi_1, \Phi_3, \Phi_4) \\ \sin(\phi_0, \phi_0', \phi_1) \\ \sin(\phi_0, \phi_0', \phi_1) \\ \sin(\phi_2, \phi_3, \phi_4) \\ \sin(\phi_2, \phi_3, \phi_4) \\ \end{array}$	$ \begin{array}{c} > (\varnothing, \varnothing, \varnothing) \\ \hline < (0.002, 1, 1) \\ > (\varnothing, \varnothing, \varnothing) \\ < (0.002, 0.094, 1) \\ \hline > (0.004 \ \varnothing, 0.374) \\ \end{array} $
$\begin{array}{ } \sin(\Phi_1, \Phi_3, \Phi_4) \\ \sin(\Phi_1, \Phi_3, \Phi_4) \\ \sin(\phi_0, \phi_0', \phi_1) \\ \sin(\phi_0, \phi_0', \phi_1) \\ \sin(\phi_2, \phi_3, \phi_4) \\ \sin(\phi_2, \phi_4, \phi_4, \phi_4) \\ \sin(\phi_2, \phi_4, \phi_4, \phi_4) \\ \sin(\phi_2, \phi_4, \phi_4) \\ \sin(\phi_2, \phi_4, \phi_4) \\ \sin(\phi_2, \phi_4, \phi_4) \\ \sin(\phi_2, \phi_4, \phi_4) \\ \sin(\phi_4, $	> (Ø, Ø, Ø) < (0.002, 1, 1) > (Ø, Ø, Ø) < (0.002, 0.094, 1) > (0.004 Ø, 0.374) < (0.005, 0.044, 0.021)
$ \sin(\Phi_1, \Phi_3, \Phi_4) $ $ \sin(\Phi_1, \Phi_3, \Phi_4) $ $ \sin(\phi_0, \phi'_0, \phi_1) $ $ \sin(\phi_0, \phi'_0, \phi_1) $ $ \sin(\phi_2, \phi_3, \phi_4) $ $ \sin(\phi_2, \phi_3, \phi_4) $ $ \sin(\phi_5, \phi_6, \phi_9) $	> (Ø, Ø, Ø) < (0.002, 1, 1) > (Ø, Ø, Ø) < (0.002, 0.094, 1) > (0.004 Ø, 0.374) < (0.005, 0 044, 0.021) > (0.004 Ø, 0.004)

Baryogenesis is relatively insensitive to the phases involved in interactions of thermally suppressed particles.

EWBG Driven by	${ m Singlino}(ilde{H}- ilde{S})$
$M_{ ilde{H}^0}, M_{ ilde{H}^\pm}$	200
$M_{ ilde{S}}$	200
$(M_{ ilde{B}},M_{ ilde{W}})$	(400, 800)
$\left(M_{H_u},M_{H_d},M_S ight)$	$(341,\!535,\!455)$
$(m_{h^0},m_{A^0},m_{H^+})$	(110, 569, 663)
$(m_{ ilde{\chi}^0},m_{ ilde{\chi}^\pm})$	(45, 311)
Single phase	EWBG & EDM
$ \sin(\Phi_1,\Phi_3,\Phi_4) $	$>(\varnothing, arnothing, arnothing)$
$ \sin(\Phi_1,\Phi_3,\Phi_4) $ $ \sin(\Phi_1,\Phi_3,\Phi_4) $	>(arnothing,arnothing,arnothing) <(0.002,1,1)
$egin{aligned} & \sin(\Phi_1, \Phi_3, \Phi_4) & & & & & & & & & & & & & $	$> (\varnothing, \varnothing, \varnothing)$ $< (0.002, 1, 1)$ $> (\varnothing, \varnothing, \varnothing)$
$\begin{split} & \sin(\Phi_1, \Phi_3, \Phi_4) \\ & \sin(\Phi_1, \Phi_3, \Phi_4) \\ & \sin(\phi_0, \phi_0', \phi_1) \\ & \sin(\phi_0, \phi_0', \phi_1) \end{split}$	$> (\emptyset, \emptyset, \emptyset)$ $< (0.002, 1, 1)$ $> (\emptyset, \emptyset, \emptyset)$ $< (0.002, 0.094, 1)$
$\begin{split} & \sin(\Phi_1, \Phi_3, \Phi_4) \\ & \sin(\Phi_1, \Phi_3, \Phi_4) \\ & \sin(\phi_0, \phi_0', \phi_1) \\ & \sin(\phi_0, \phi_0', \phi_1) \\ & \sin(\phi_2, \phi_3, \phi_4) \end{split}$	
$\begin{split} & \sin(\Phi_1, \Phi_3, \Phi_4) \\ & \sin(\Phi_1, \Phi_3, \Phi_4) \\ & \sin(\phi_0, \phi_0', \phi_1) \\ & \sin(\phi_0, \phi_0', \phi_1) \\ & \sin(\phi_2, \phi_3, \phi_4) \\ & \sin(\phi_2, \phi_3, \phi_4) \end{split}$	
$\begin{split} & \sin(\Phi_1, \Phi_3, \Phi_4) \\ & \sin(\Phi_1, \Phi_3, \Phi_4) \\ & \sin(\phi_0, \phi_0', \phi_1) \\ & \sin(\phi_0, \phi_0', \phi_1) \\ & \sin(\phi_2, \phi_3, \phi_4) \\ & \sin(\phi_2, \phi_3, \phi_4) \\ & \sin(\phi_5, \phi_6, \phi_9) \end{split}$	> (Ø, Ø, Ø) < (0.002, 1, 1) > (Ø, Ø, Ø) < (0.002, 0.094, 1) > (0.004 Ø, 0.374) < (0.005, C 044, 0.021) > (0.004 Ø, 0.004)

Baryogenesis is relatively insensitive to the phases involved in interactions of thermally suppressed particles.

EWBG Driven by	${ m Singlino}(ilde{H}- ilde{S})$
$M_{ ilde{H}^0}, M_{ ilde{H}^\pm}$	200
$M_{ ilde{S}}$	200
$(M_{ ilde{B}},M_{ ilde{W}})$	(400, 800)
$\left(M_{H_u},M_{H_d},M_S ight)$	$(341,\!535,\!455)$
$(m_{h^0},m_{A^0},m_{H^+})$	(110, 569, 663)
$(m_{ ilde{\chi}^0},m_{ ilde{\chi}^\pm})$	(45, 311)
Single phase	EWBG & EDM
$ \sin(\Phi_1,\Phi_3,\Phi_4) $	$>(\varnothing, arnothing, arnothing)$
$ \sin(\Phi_1,\Phi_3,\Phi_4) $ $ \sin(\Phi_1,\Phi_3,\Phi_4) $	>(arnothing,arnothing,arnothing) <(0.002,1,1)
$egin{aligned} & \sin(\Phi_1, \Phi_3, \Phi_4) & & & & & & & & & & & & & $	$> (\varnothing, \varnothing, \varnothing)$ $< (0.002, 1, 1)$ $> (\varnothing, \varnothing, \varnothing)$
$\begin{split} & \sin(\Phi_1, \Phi_3, \Phi_4) \\ & \sin(\Phi_1, \Phi_3, \Phi_4) \\ & \sin(\phi_0, \phi_0', \phi_1) \\ & \sin(\phi_0, \phi_0', \phi_1) \end{split}$	$> (\emptyset, \emptyset, \emptyset)$ $< (0.002, 1, 1)$ $> (\emptyset, \emptyset, \emptyset)$ $< (0.002, 0.094, 1)$
$\begin{split} & \sin(\Phi_1, \Phi_3, \Phi_4) \\ & \sin(\Phi_1, \Phi_3, \Phi_4) \\ & \sin(\phi_0, \phi_0', \phi_1) \\ & \sin(\phi_0, \phi_0', \phi_1) \\ & \sin(\phi_2, \phi_3, \phi_4) \end{split}$	
$\begin{split} & \sin(\Phi_1, \Phi_3, \Phi_4) \\ & \sin(\Phi_1, \Phi_3, \Phi_4) \\ & \sin(\phi_0, \phi_0', \phi_1) \\ & \sin(\phi_0, \phi_0', \phi_1) \\ & \sin(\phi_2, \phi_3, \phi_4) \\ & \sin(\phi_2, \phi_3, \phi_4) \end{split}$	
$\begin{split} & \sin(\Phi_1, \Phi_3, \Phi_4) \\ & \sin(\Phi_1, \Phi_3, \Phi_4) \\ & \sin(\phi_0, \phi_0', \phi_1) \\ & \sin(\phi_0, \phi_0', \phi_1) \\ & \sin(\phi_2, \phi_3, \phi_4) \\ & \sin(\phi_2, \phi_3, \phi_4) \\ & \sin(\phi_5, \phi_6, \phi_9) \end{split}$	> (Ø, Ø, Ø) < (0.002, 1, 1) > (Ø, Ø, Ø) < (0.002, 0.094, 1) > (0.004 Ø, 0.374) < (0.005, C 044, 0.021) > (0.004 Ø, 0.004)

Baryogenesis is relatively insensitive to the phases involved in interactions of thermally suppressed particles. Electron EDM itself does not preclude EWBG in NMSSM.

NMSSM can generate enough CP violation to explain the BAU.

- It can be consistent with the current electron EDM search limit.
- EDMs of other particles(e.g. neutron) will introduce further constraints on the parameter space.

NMSSM can generate enough CP violation to explain the BAU.

- It can be consistent with the current electron EDM search limit.
- EDMs of other particles(e.g. neutron) will introduce further constraints on the parameter space.

Backup: MSSM

SUSY:
$$W^{\text{MSSM}} = \bar{u}\mathbf{y}_{\mathbf{u}}QH_{u} - \bar{d}\mathbf{y}_{\mathbf{d}}QH_{d} - \bar{e}\mathbf{y}_{\mathbf{e}}LH_{d} + \mu H_{u}H_{d}$$

Backup: VEV Insertion Approximation

Schwinger-Dyson Equation:

$$\begin{split} \widetilde{G}(x,y) &= \widetilde{G}^0(x,y) + \int d^4w \int d^4z \ \widetilde{G}^0(x,w) \widetilde{\Sigma}(w,z) \widetilde{G}(z,y) \\ \widetilde{G}(x,y) &= \widetilde{G}^0(x,y) + \int d^4w \int d^4z \ \widetilde{G}(x,w) \widetilde{\Sigma}(w,z) \widetilde{G}^0(z,y) \end{split}$$

Continuity equation for Dirac fermions:

$$\begin{split} \frac{\partial n}{\partial X_0} + \boldsymbol{\nabla} \cdot \mathbf{j}(X) &= -\int d^3 z \int_{-\infty}^{X_0} dz_0 \ \mathrm{Tr} \Big[\Sigma^>(X,z) S^<(z,X) - S^>(X,z) \Sigma^<(z,X) \\ &+ S^<(X,z) \Sigma^>(z,X) - \Sigma^<(X,z) S^>(z,X) \Big] \end{split}$$

Backup: Preliminary Results

EWBG by	$\mathrm{Neutralino}(ilde{N}^0, ilde{\chi}^{\pm})$		$\operatorname{Higgs}(H_i)$			Both
	${ m Singlino}(ilde{H}- ilde{S})$	$\mathbf{B}\&\mathbf{W}(\tilde{H}-\tilde{B}\&\tilde{H}-\tilde{W})$	$\operatorname{Singlet}(H_u-S)$	${ m Higgs}(H_u-H_d)$	$\operatorname{Scalar}(H_u - H_d - S)$	All
$M_{ ilde{H}^0}, M_{ ilde{H}^\pm}$	200	200	600	600	600	200
$M_{ ilde{S}}$	200	400	400	400	400	200
$(M_{\tilde{B}},M_{\tilde{W}})$	(400, 800)	(200, 200)	(400, 800)	(400, 800)	(400, 800)	(200, 20
$\left(M_{H_u},M_{H_d},M_S ight)$	$(341,\!535,\!455)$	$(351,\!549,\!597)$	(189, 324, 204)	(185,185,508)	(193, 193, 209)	(201, 201,
$(m_{h^0},m_{A^0},m_{H^+})$	(110, 569, 663)	(89, 617, 680)	(94, 317, 421)	(120,275,325)	(103, 195, 334)	(108, 169,
$(m_{ ilde{\chi}^0},m_{ ilde{\chi}^\pm})$	(45, 311)	(154, 163)	(394, 675)	(262, 673)	(394, 673)	(152, 16
		Constraints on C	PV phases from EWBG	and electron EDM		
$ \sin(\Phi_1,\Phi_3,\Phi_4) $	$>(\varnothing, arnothing, arnothing)$	$> (0.006, \varnothing, arnothing)$	>(0.242, arnothing, arnothing)	>(0.299, arnothing, arnothing)	>(0.293, arnothing, arnothing)	> (0.019,
$ \sin(\Phi_1,\Phi_3,\Phi_4) $	< (0.002, 1, 1)	<(0.001,1,1)	< (0.002, 1, 1)	<(0.003,1,1)	< (0.003, 1, 1)	< (0.001,
$ \sin(\phi_0,\phi_0',\phi_1) $	$>(\varnothing, arnothing, arnothing)$	>(0.005, arnothing, arnothing)	>(arnothing,arnothing,arnothing)	>(0.259, arnothing, arnothing)	>(arnothing,arnothing,arnothing)	> (0.017, 4
$ \sin(\phi_0,\phi_0',\phi_1) $	< (0.002, 0.094, 1)	< (0.001, 0.109, 1)	< (0.001, 0.006, 1)	< (0.003, 0.422, 1)	< (0.002, 0.016, 1)	< (0.001, 0.0
$ \sin(\phi_2,\phi_3,\phi_4) $	> (0.004, arnothing, 0.374)	$>$ (\varnothing , \varnothing , 0.417)	> (arnothing, 0.035, 0.003)	> (Ø, 0.100 , 0.010)	> (Ø, 0.003 , 0.001)	> (0.007, 0.04
$ \sin(\phi_2,\phi_3,\phi_4) $	< (0.005, 0.044, 0.021)	< (0.003, 0.610, 0.284)	< (0.008, 0.008, 0.001)	< (0.012, 0.015, 0.003)	< (0.011, 0.004, 0.001)	< (0.003, 0.00
$ \sin(\phi_5,\phi_6,\phi_9) $	> (0.004, Ø, 0.004)	$> (0.312, \varnothing, 0.005)$	> (0.010, arnothing, 0.259)	> (0.012, Ø, 0.319)	>(0.002, arnothing, 0.314)	> (0.006, Ø,

