Flavor violating Higgs and Z decays at FCC-ee

DPF-Pheno 2024 05/16/2024

Manuel Szewc University of Cincinnati

This talk

Based on <u>recent work</u> by J.F. Kamenik, A. Korajac, M.S., M. Tammaro and J. Zupan

We translate **advances in flavor tagging** with **novel statistical analysis techniques** to bounds on $Z/h \rightarrow bs$, **cu couplings** in future high energy **high statistics** ee-colliders

We compare to **updated SM predictions** and **BSM benchmarks** and find that FCC-ee can place bounds on $h \rightarrow bs, cu$ that are **phenomenologically relevant**

SM Prediction

We update the **SM predictions** for **B(h/Z**→**bs,bd,cu)** obtaining

 $\Gamma(h \to b\bar{s}) = (1.8 \pm 0.3) \times 10^{-10} \text{GeV}$ $\Gamma(h \to b\bar{d}) = (7.9 \pm 1.3) \times 10^{-12} \text{GeV}$

 $\Gamma(Z \to b\bar{s}) = (5.2 \pm 0.9) \times 10^{-8} \text{GeV}$ $\Gamma(Z \to b\bar{d}) = (2.3 \pm 0.4) \times 10^{-9} \text{GeV}$

with $h/Z \rightarrow cu$ being O(10⁶) smaller than $h/Z \rightarrow bs$.

The main uncertainties are **CKM matrix elements** uncertainties (**~2%**) + **higher order QCD corrections**, which we estimate via partial two-loop mixed QCD-EW corrections (**~17%**)

Constraints

Indirect constraints much better than direct and $Z{\rightarrow}qq'$ much more constrained than $h{\rightarrow}qq'$

Decay	SM prediction	exp. bound	indir. constr.
$\mathcal{B}(h \to bs)$	$(8.9 \pm 1.5) \cdot 10^{-8}$	0.16	2×10^{-3}
$\mathcal{B}(h o bd)$	$(3.8 \pm 0.6) \cdot 10^{-9}$	0.16	10^{-3}
$\mathcal{B}(h \to cu)$	$(2.7 \pm 0.5) \cdot 10^{-20}$	0.16	2×10^{-2}
$\mathcal{B}(Z \to bs)$	$(4.2\pm0.7)\cdot10^{-8}$	2.9×10^{-3}	6×10^{-8}
$\mathcal{B}(Z \to bd)$	$(1.8 \pm 0.3) \cdot 10^{-9}$	2.9×10^{-3}	6×10^{-8}
$\mathcal{B}(Z \to cu)$	$(1.4 \pm 0.2) \cdot 10^{-18}$	2.9×10^{-3}	4×10^{-7}

FCC-ee

Very clean environment with high statistics + controlled backgrounds \rightarrow Precision machine.

For $h \rightarrow qq'$, we can consider **Zh production with dileptonic Z** (Z \rightarrow MET can be used as well but backgrounds differ) $\rightarrow N_h = 6.7 \times 10^5$ before Z decay

For Z \rightarrow qq', we simply look at the **Z pole** \rightarrow **N**_z = **5 x 10**¹²

Our proposal is very simple. Let's take as an example $Z/h \rightarrow bs$.

- We **select events** based on the appropriate di-jet channel, $Z(\rightarrow \ell \ell)h(\rightarrow jj)$ or $Z\rightarrow jj$. We obtain the total number of events **N**.
- We tag each jet in each event using two orthogonal b- and s-taggers.
- We obtain the **measured events in each** (n_b, n_s) **bin**, $N_{b,s}$. $(n_b, n_s) = {(0,0), (0,1), (1,0), (1,1), (0,2), (2,0)}.$
- We describe the relationship between $N_{b,s}$ and N with a **probabilistic model depending on B(Z/h** \rightarrow **bs)**.
- We use this model to **perform statistical tests on B(Z/h→bs)**.

We scan over possible orthogonal b- and s-taggers with systematics. **TPR and FPR assume common efficiencies for both taggers**.

If no systematic uncertainties, the SM value could be reached. $Z \rightarrow qq'$ we are **systematics dominated**.

When the systematics are **very small but non-zero**, the upper limits are generally **above the SM values and the indirect constraints**.

We scan over possible orthogonal b- and s-taggers with systematics. **TPR and FPR assume common efficiencies for both taggers**.

The systematic uncertainties (**small**, but **achievable** with future dedicated calibrations) are **not too impactful here.** The analysis is **statistics dominated**.

The addition of the s-tagger **greatly** increases the performance of the analysis and yields an upper limit on $B(h \rightarrow bs)$ that could be better than indirect constraints.

Constraints on BSM effects

We use an **effective lagrangian** to capture any BSM effects in $B(h/Z \rightarrow bs)$ (we can do something similar for bd, cu)

$$\mathcal{L} \supset y_{sb}(\bar{s}_L b_R)h + y_{bs}(\bar{b}_L s_R)h + h.c.$$

$$\mathcal{L} \supset g_{sb}^L(\bar{s}_L\gamma_\mu b_L)Z^\mu + g_{sb}^R(\bar{s}_R\gamma_\mu b_R)Z^\mu + \text{h.c.}$$

When comparing explicitly with low-energy constraints, we observe how **the FCC-ee can probe regions indirect searches cannot**.

Black lines are **upper limits** from FCC-ee, magenta lines are **upper** limits from LHC and red regions correspond to the allowed parameter space at 1-, 2- and $3-\sigma$ level from low-energy constraints

Outlook

The FCC-ee has the potential to **explore flavor changing decays of the Higgs and Z bosons**, with similar expectations for the CEPC.

We **updated the SM predictions** for the $h/Z \rightarrow bs$, bd, cu branching ratios. These are **orders of magnitude smaller than the FCC-ee reach**, so any signal in these channels would unambiguously imply existence of New Physics

For $B(Z \rightarrow bs, bd, cu)$, indirect constraints already push towards the SM value which is **unreachable** without **almost perfectly calibrated perfect taggers**.

The projected sensitivities to $B(h \rightarrow bs,cu)$ go **well beyond the current constraints** from indirect probes. Even with only the b-tagger, the projected reach could probe significant portions of unconstrained NP parameter space.

And more...

In arxiv:2405.08880 (by D. Marzocca, M.S. and M. Tammaro), similar techniques for $|V_{cs}|$ and $|V_{cb}|$ determination via WW \rightarrow all hadronic @ FCC-ee

- Lattice free determination
- Possible solution to tension
 between inclusive vs exclusive
 |V_{cb}| from meson decays.

Backup slides

We update the **SM predictions** for **B(h\rightarrowbs,bd,cu)** (see arXiv:1506.02718 and arXiv:2009.07166) and **B(Z\rightarrowbs,bd)** (see Phys. Rev. D 22, 214 (1980)., Phys. Rev. D 27, 570 (1983) and Phys. Rev. D 27, 579 (1983))

We compute the **one-loop decay amplitude**

$$\Gamma(h/Z \to b\bar{q}) = N_C \frac{|\bar{\mathcal{M}}(h/Z \to q\bar{q}')|^2}{16\pi m_{h/Z}}$$

We perform the computation numerically with FeynArts+FeynCalc+LoopTools. We cross-checked results with Package-X and also checked that all the m_q -independent terms in the amplitude vanish due to the CKM unitarity;

The experimental inputs are (when necessary we run to the appropriate scale through 3-loop RGE)

param.	value	param.	value	param	value
$ V_{tb} $	$0.999142\substack{+0.000018\\-0.000023}$	$ V_{ts} $	$0.04065\substack{+0.00040\\-0.00055}$	$ V_{td} $	$0.008519\substack{+0.000075\\-0.000146}$
$m_t(m_Z)$	$171.512 \pm 0.329 {\rm GeV}$	$m_t(m_h)$	$167.036 \pm 0.315{\rm GeV}$		
$m_b(m_Z)$	$2.871\pm0.024{\rm GeV}$	$m_b(m_h)$	$2.796\pm0.024{\rm GeV}$		
m_Z	$91.1876 \pm 0.0021{\rm GeV}$	m_W	$80.377\pm0.012\mathrm{GeV}$	m_h	$125.25\pm0.17\mathrm{GeV}$
$\alpha^{-1}(m_Z)$	127.955 ± 0.009	$\alpha^{-1}(m_h)$	127.506 ± 0.009	$s_W^2(m_Z)$	0.23122 ± 0.00004
$\alpha_s(m_Z)$	0.1179 ± 0.0009	$\alpha_s(m_h)$	0.1126 ± 0.0008	$\alpha_s(m_t)$	0.1076 ± 0.0007

The **direct constraints** are from LHC searches for $h \rightarrow others$ and from LEP measurements of the Z hadronic width.

The **main (or only) indirect constraints** are B_s mixing for h \rightarrow bs, B_d mixing for h \rightarrow bd, D mixing for h \rightarrow cu, b \rightarrow s $\ell^+\ell^-$ transitions for Z \rightarrow bs, B_d mixing for Z \rightarrow bd and B(D⁰ $\rightarrow \mu^+\mu^-$) for Z \rightarrow cu

Putting it all together: indirect constraints much better than direct and $Z \rightarrow qq'$ much more constrained than $h \rightarrow qq'$

As a first approximation, we can **disregard all backgrounds that aren't Zh,h** \rightarrow **bb,cc,ss,gg or Z** \rightarrow **qq**, mainly the $\tau^{+}\tau^{-}$ for Z \rightarrow bs and the Drell-Yan, W W, ZZ for h \rightarrow bs.

These other processes correspond to **subleading effects** and could be **reduced through optimized selection** or **incorporated into the analysis** as a re-scaling of the flavor-conserving contributions.

Because we are doing a proof-of-concept, we **avoid the use of dedicated MC simulations** and consider our model to be enough of a **faithful representation of the real physics** that it can be used to generate pseudo-data.

We follow arXiv:2209.01222 (see also arXiv:2201.11428,, arXiv:2004.12181) to **leverage orthogonal taggers** to extract information regarding small FCNC.

For example, for $h/Z \rightarrow bs$, we **categorize di-jet events** in terms of the number of **s-tagged** n_s and **b-tagged** n_b jets. The expected populations will depend on **BR(h/Z \rightarrow bs)**

We write the **probabilistic model** in terms of efficiencies and of the relevant Branching ratios.

$$\bar{N}_{(n_b,n_s)} = \sum_f p(n_b, n_s | f, \nu) \bar{N}_f(\nu) \qquad \bar{N}_f = \mathcal{B}(Z/h \to f) N_{Z/h} \mathcal{A}$$

We define a **parameter of interest** μ

$$=\frac{\mathcal{B}(Z/h\to bs)}{\mathcal{B}(Z/h\to bs)_{\rm SM}}$$

and an **appropriate likelihood**

$$\mathcal{L}(\mu,\nu) = \mathcal{P}(N_{(n_b,n_s)}|\bar{N}_{(n_b,n_s)}(\mu,\nu))p(\nu)$$

We **profile the likelihood** over a set of nuisance parameters and construct the **profile likelihood ratio**

$$\lambda(\mu) = rac{\mathcal{L}(\mu, \hat{\hat{
u}}(\mu))}{\mathcal{L}(\hat{\mu}, \hat{
u})}$$

which is used to compute the **test statistic**

$$t_{\mu} = -2 \operatorname{Ln} \lambda(\mu)$$

With this we compute **95% CL upper limits** assuming $\mu_{true} = 0$ and solving for $t_{\mu} = (\Phi^{-1}(0.95))^2$. Due to the high statistics and simplicity of the strategy, we can use an **Asimov dataset** instead of using ensembles of pseudo-data.

Nuisance Parameters

Nuisance Param.	Nominal Value	Rel. uncert. $(\%)$
${\cal B}(h o gg)$	1.4%	1.2
$\mathcal{B}(h ightarrow ss)$	0.024%	160
$\mathcal{B}(h \to cc)$	2.9%	2.8
$\mathcal{B}(h o bb)$	56%	0.4
ϵ^{lpha}_{eta}	See text	1.0
N_h	$6.7 imes10^5$	0.5
\mathcal{A}	0.70	0.1

Nuisance param.	Nominal value	Rel. uncert. (in %)
$\mathcal{B}(Z \to uu + dd)$	27.01%	5.0
$\mathcal{B}(Z \to ss)$	15.84%	3.8
$\mathcal{B}(Z \to cc)$	12.03%	1.7
$\mathcal{B}(Z o bb)$	15.12%	0.33
ϵ^{lpha}_{eta}	See text	1.0
N_Z	5×10^{12}	10^{-3}
${\cal A}$	0.994	10^{-3}

Possible BSM benchmarks

The h \rightarrow bs effects can be generated in a **Two Higgs Doublet Model (2HDM)**. If we **decouple the heavy scalar H and pseudoscalar A** and assuming **no diagonal couplings of the second doublet**, we obtain

$$\mathcal{L}_{\text{Yukawa}} \supset -\left(\frac{m_i}{v}\delta_{ij}c_{\alpha} - Y_{ij}^ds_{\alpha}\right)\bar{d}_{Li}d_{Rj}h + \text{h.c.} + \dots$$

All SM predictions are re-scaled by c_{α}^{2} and the couplings we are interested in will be $\mathbf{y}_{qq'} = \mathbf{Y}_{qq'} \mathbf{s}_{\alpha}$

Possible BSM benchmarks

The Z \rightarrow bs and h \rightarrow bs effects can be generated at the same time with **Vector-Like Quarks**. e.g. vector-like singlet down-type quarks, (D_L, D_R), singlets under SU(2)_L and with hypercharge -½. We obtain the FCNC from the mixture with the SM down-type quarks after EWSB

$$\mathcal{L}_{\mathrm{VLQ}}^D \supset \frac{g}{2c_W} X_{ij}^d \big(\bar{d}^i \gamma^\mu P_L d^j \big) Z_\mu + X_{ij}^d \frac{m_j}{v} \big(\bar{d}^i P_R d^j \big) h + \mathrm{h.c.}$$

we can read $\mathbf{g}_{qq'}$ and $\mathbf{y}_{qq'}$ as different combinations of $\mathbf{X}_{qq'}$. We can do the same with a vector-like doublet with hypercharge ½ to get different chiralities.

Results: Higgs

We obtain limits on $B(h \rightarrow bs)+B(h \rightarrow bd)$ by using **only a b-tagger**.

We scan over possible taggers by assuming **identical True Positive Rates** (TPRs) and False Positive Rates (FPRs) for all taggers.

With no systematics, we observe that for FPR < 10⁻² (after the FPR saturates) and TPR in [0.4,0.8] we are **already in an interesting region for BSM limits**.

We show with a star a tagger based on reported taggers in the literature.

Results: Z boson

For BR(Z \rightarrow bs)+BR(Z \rightarrow bd) with **a b-tagger**, the limits are **lower than for h\rightarrowqq'** due to the **higher statistics** even if there is **no asymmetry between Z\rightarrowbb and Z\rightarrowss** to enhance the analysis.

However, the **indirect limits are much better** and this **analysis is not competitive**.

We also use explicit Tight and Medium WPs derived from reported taggers

Loose :

 $\epsilon^b_{\beta;\text{Loose}} = \{0.02, \, 0.001, \, 0.02, \, 0.90\},\,$

Medium :

 $\epsilon_{\beta;\text{Loose}}^{b} = \{0.002, 0.0001, 0.02, 0.30\}, \qquad \epsilon_{\beta;\text{Loose}}^{b} = \{0.007, 0.0001, 0.003, 0.80\}, \qquad \epsilon_{\beta;\text{Med}}^{s} = \{0.007, 0.0001, 0.0001, 0.0003, 0.80\}, \qquad \epsilon_{\beta;\text{Med}}^{s} = \{0.007, 0.0001,$

 $\begin{aligned} \epsilon^s_{\beta;\text{Loose}} &= \{0.20, \ 0.90, \ 0.10, \ 0.01\}, \\ \epsilon^s_{\beta;\text{Med}} &= \{0.09, \ 0.80, \ 0.06, \ 0.004\}, \end{aligned}$

All WPs are **similar** and provide **competitive limits**. Additionally, they are consistent with the approximate scan shown before.

ϵ^b_eta	ϵ^s_eta	$\mathcal{B}(h \to bs) \ (95\% \ \mathrm{CL})$
$\epsilon^{b}_{\beta;\text{Loose}}$	$\epsilon^s_{\beta;\mathrm{Loose}}$	1.3×10^{-3}
$\epsilon^{b}_{\beta;\text{Loose}}$	$\epsilon^s_{eta; ext{Med}}$	9.6×10^{-4}
$\epsilon^b_{eta; ext{Med}}$	$\epsilon^s_{\beta;\text{Loose}}$	1.4×10^{-3}
$\epsilon^b_{eta; ext{Med}}$	$\epsilon^s_{eta; ext{Med}}$	1.0×10^{-3}

Results: $h \rightarrow bs + 2HDM$

We consider $m_H = m_A = 1$ TeV and different values of s_{α} . Although the details change, the conclusions hold: **the FCC-ee can probe regions indirect searches cannot.**

Results: h→bd

When comparing explicitly with low-energy constraints, we observe how **the FCC-ee can probe regions indirect searches cannot.**

The right plot assumes **no effects from H and A**.

Results: $h \rightarrow bd + 2HDM$

If we consider $m_H = m_A = 1$ TeV and different values of s_{α} although the details change, the conclusions hold: **the FCC-ee can probe regions indirect searches cannot.**

We consider only a **c-tagger** as there is no state-of-the-art u-tagger.

With only a c-tagger, whose systematics are mildly impactful, **the upper limits are competitive for BSM benchmarks**.

Again, we can use the reported efficiencies for the c-tagger

Loose :

Medium :

$$\epsilon_{\beta;\text{Loose}}^{c} = \{0.07, 0.07, 0.90, 0.04\},\\ \epsilon_{\beta;\text{Med}}^{c} = \{0.02, 0.008, 0.80, 0.02\},\$$

Both WPs are pretty similar and consistent with the scan. More importantly, **they provide competitive limits**.

ϵ^c_{eta}	$\mathcal{B}(h \to cu) \ (95\% \text{ CL})$
$\epsilon^{c}_{\beta;\text{Loose}}$	$2.9 imes 10^{-3}$
$\epsilon^c_{eta; ext{Med}}$	2.5×10^{-3}

We again see how the **FCC-ee probes** regions beyond the reach of indirect searches.

Results: h→cu + 2HDM

If we consider $m_H = m_A = 1$ TeV and different values of s_{α} although the details change, the conclusions hold: **the FCC-ee can probe regions indirect searches cannot.**

If we add an idealized u-tagger, the performance **greatly increases** again.

Additionally, the Medium WP can go higher in FPR and still have less mistags in $(n_c, n_u)=(1,1)$ than for $(n_b, n_s)=(1,1)$ due to **the smallness of h**→**uu+dd** compared to h→ss.

From the likelihood + test statistic we obtain **confidence intervals**, **discovery significance** and/or **upper limits** on BR($h/Z \rightarrow bs$)

$$\lambda(\mu) = \frac{\mathcal{L}(\mu, \hat{\hat{\nu}}(\mu))}{\mathcal{L}(\hat{\mu}, \hat{\nu})} \qquad t_{\mu} = -2 \operatorname{Ln} \lambda(\mu)$$

Besides the **95% CL upper limits**, we can also compute

- -
- **68% confidence intervals** assuming $\mu_{true} = 1$ and solving for $t_{\mu} = 1$ **Discovery significance** assuming $\mu_{true} = 1$ and computing for $Z = \sqrt{t_0}$. -

The indirect limits on the couplings are at the SM prediction level. It's hard to show them in the same scale as the FCC-ee limits!

We can reframe this in terms of the **discovery significance**.

We see how the SM value **cannot be discovered** with this strategy except with almost no uncertainties and pushing the limits of the taggers.

Another complementary viewpoint is the **upper limit of the 95% confidence interval** on the signal strength in units of its MLE estimate.

We observe how **systematic uncertainties degrade the performance**, with a 30% achievable with very small uncertainties only for almost perfect taggers.

Results: Z \rightarrow **bs**

We see how we need the combination of **very small uncertainties** and **very small FPR** to be competitive with indirect constraints.

$(\text{TPR}, \text{FPR}, \Delta \epsilon^{\alpha}_{\beta} / \epsilon^{\alpha}_{\beta})$	σ_{μ}^{+} for $\mu_{\rm true} = 1$	Discov. signif. (in σ) $\mathcal{B}(Z \to bs) (95\% \text{ CL})$
$(0.4, 10^{-4}, 1\%)$	0.40(stat.) + 32(syst.)	0.032	1.8×10^{-6}
$(0.4, 10^{-4}, 0.1\%)$	0.40(stat.) + 3.2(syst.)	0.32	$1.8 imes 10^{-7}$
$(0.2, 10^{-5}, 1\%)$	0.36(stat.) + 6.3 (syst.)	0.16	4.2×10^{-7}
$(0.2,10^{-5},0.1\%)$	0.36(stat.) + 0.63 (syst.)	1.4	4.2×10^{-8}

VLQ from $h \rightarrow bs + Z \rightarrow bs$

 $X_{bs}+X_{sb}$ is **strongly constrained**, mostly by b \rightarrow s $\ell^+\ell^-$ transitions generated by Z \rightarrow bs and reflects the preference for negative values of $g_{bs,sb}$.

 $X_{bs}-X_{sb}$ is **more weakly** constrained, reflecting mostly B_s mixing generated from both $h \rightarrow bs$ and $Z \rightarrow bs$ and reflecting the weaker constraints on both y_{sb} and g_{sb} (the bs couplings are suppressed by a m_b/m_s factor)

VLQ from $h \rightarrow bs + Z \rightarrow bs$

The results are mostly unchanged if we use an SU(2)_L doublet instead of a singlet.

The differences arise due to the change in chiralities, with the right-handed currents now generated more constrained than the left-handed currents of the singlet case.

Results: $Z \rightarrow bd$

The indirect limits on the couplings are close to the the SM prediction level. It's hard to show them in the same scale as the FCC-ee limits!

The situation is similar for $Z \rightarrow cu$.

With no u-tagger, the results are **almost identical to the Z \rightarrow bq case**.

We again observe how the results are **not competitive with the indirect constraints**.

Systematics **hinder the already suboptimal** performance, as the analysis is **systematics dominated**.

We do not implement an idealized u-tagger because it cannot distinguish between u- and d-quarks. This causes the Z→uu+dd background to be ~twice as large as Z→ss for equivalent TPR,FPR.

Results: $Z \rightarrow cu$

The indirect limits on the couplings are not at the SM prediction level, but still much lower than the FCC-ee reach.

