New Directions for ALP Searches Combining Nuclear Reactors and Haloscopes

based on arXiv:2310.03631 (PRL 2024) in collaboration with F. Arias-Aragón and J. Quevillon

Vedran Brdar

New Directions for ALP Searches Combining Nuclear Reactors and Haloscopes

Motivation: Strong CP Problem and Axion

► take QCD with 1 quark $\tilde{m} = e^{i\gamma_5\phi}$ $\mathcal{L}_{CP} \supset \frac{\theta}{32\pi^2} \epsilon_{\mu\nu\rho\sigma} G_a^{\mu\nu} G_a^{\rho\sigma} - \bar{\psi}\tilde{m}\psi$

- under chiral rotation $\psi' = \psi e^{\frac{i\alpha\gamma_5}{2}}$ $\phi \rightarrow \phi' = \phi + \alpha, \ \theta \rightarrow \theta' = \theta - \alpha$
- $\bar{\theta} \equiv \theta + \phi$ is invariant and we can not rotate away the CP violation terms in the strong sector
- ▶ neutron electric dipole moment $\simeq 10^{-14}\overline{\theta}$ e cm and measurements give $|d_n| < 1.8 \times 10^{-26}$ e cm
- $\bar{ heta} \lesssim 10^{-12}$ (strong CP problem)

 introduce U(1)_{PQ} symmetry which is spontaneously broken and generates axion

$$\mathcal{L}_{a} \supset rac{a}{f_{a}} rac{1}{32\pi^{2}} \epsilon_{\mu
u
ho\sigma} G_{a}^{\mu
u} G_{a}^{
ho\sigma}$$

- From the axion potential we find that its VEV is $\langle a \rangle = -\bar{\theta} f_a$
- redefine $a_p = a \langle a \rangle$; $\langle a_p \rangle = 0$
- we got $\mathcal{L}_a \supset -\bar{\theta} \frac{1}{32\pi^2} \epsilon_{\mu\nu\rho\sigma} G^{\mu\nu}_a G^{\rho\sigma}_a$ which cancels CP term in QCD \mathcal{L}
- in addition to solving the strong CP problem, axion is also a viable dark matter (DM) candidate

Axion-Photon Interaction

 axion's two-photon interaction plays a key role in the majority of the experimental searches

$$\mathcal{L} \supset -rac{1}{4}\, g_{a\gamma\gamma}\, a\, F^{\mu
u}\, ilde{F}_{\mu
u} = g_{a\gamma\gamma}\, ec{E}\cdotec{B}$$

- \blacktriangleright here, $g_{a\gamma\gamma} \propto f_a^{-1}$ and $m_a f_a pprox m_\pi f_\pi \sim (100\,{
 m MeV})^2$
- fo the case of axion-like particles (ALPs), particle's mass and its decay constant are treated as independent parameters

New Directions for ALP Searches Combining Nuclear Reactors and Haloscopes 3 / 12 DPF-Pheno, May 2024

Detection via Axion/ALP Conversion in Magnetic Field

Helioscope searches with CAST experiment: ALPs are produced in the Sun by Primakoff scattering and converted back to X-rays in the B-field

Haloscopes: A microwave cavity is in a magnetic field, allowing the conversion of DM axions into photons. If the axion's mass matches the resonance frequency of the cavity, the power output experiences amplification

Axion/ALP Production at Nuclear Reactors

- Primakoff scattering of copiously produced photons in the reactor core generates ALP flux
- ALPs decay or scatter in nearby neutrino experiments (e.g. CONNIE, CONUS, MINER, TEXONO)

New Directions for ALP Searches Combining Nuclear Reactors and Haloscopes

5/12

Axion Reactoscope

- Axions/ALPs are produced in the reactor core via Primakoff scattering of photons chiefly off U²³⁵
- ▶ Axions/ALPs are converted in the B-field to detectable O(MeV) photons

New Directions for ALP Searches Combining Nuclear Reactors and Haloscopes

6/12

Axion Reactoscope

New Directions for ALP Searches Combining Nuclear Reactors and Haloscopes

Experimental Setup and Sensitivities

- For a successful measurement, a photon detection system should be placed behind the magnetized region
- Regarding detectors, there is an option to use inorganic scintillators, e.g. Nal[TI], LaBr3(Ce) for the detection of O(MeV) photons
- CAST also searched for MeV photons from ALP conversion (0904.2103) and based on that we made conservative background estimates of O(1) event per second
- for such case, g_{aγγ} sensitivity is weakened by 1 order of magnitude compared to the ideal case with no backgrounds
- reactor-related backgrounds can be removed with proper shielding

Experimental Setup and Sensitivities

nuclear reactor (ILL) and the resonant cavity experiment (GrAHal) in close proximity to each other (700 m) exist in Grenoble, France

- "ILL+GrAHal Available": B = 9.5 T, R = 40 cm and L=80 cm
- "ILL+GrAHal High B": B = 43 T, R = 1.7 cm and L=3.4 cm

Experimental Setup and Sensitivities

- ALP production at ILL and detection with ILL magnets
- ALP production at Bugey and detection with CAST at CERN
- "Optimal": Kashiwazaki-Kariwa power plant ($P \sim 8.2 \text{ GW}$) + BabylAXO

- a large portion of the yet uncovered parameter space can be probed
- astrophysical and cosmological constraints are not included
- astrophysical ALP production can be suppressed (see scenarios motivated by the old PVLAS anomaly)

Reactoscope Opportunities at ORNL

 "HFIR+MAG009": B = 14 T, R = 2.1 cm, L=20 cm

- \blacktriangleright magnet can be put at the distance of \sim 10 m from the reactor core
- e.g. PROSPECT $\bar{\nu}$ detector is at the distance of 6.5 m

Summary

- ALPs can be copiously produced in nuclear reactors provided there is an g_{aγγ} interaction
- Through the same interaction, ALPs can convert back to photons in a magnetic field
- The experimental setup features a nuclear reactor alongside the adjacent magnetic field, an essential component in axion haloscope experiments
- Appropriate locations for conducing the "Axion reactoscope" experiment include Grenoble (France) and Oak Ridge National Laboratory
- There are regions in the parameter space where sensitivity projections exceed the existing laboratory limits

New Directions for ALP Searches Combining Nuclear Reactors and Haloscopes