New Directions for ALP Searches Combining Nuclear Reactors and Haloscopes

based on arXiv:2310.03631 (PRL 2024) in collaboration with F. Arias-Aragón and J. Quevillon

Vedran Brdar

[New Directions for ALP Searches Combining Nuclear Reactors and Haloscopes](#page-11-0) DPF-Pheno, May 2024

Motivation: Strong CP Problem and Axion

▶ take QCD with 1 quark $\mathcal{L}_{\textsf{CP}} \supset \frac{\theta}{32s}$ $\frac{\partial}{32\pi^2}\epsilon_{\mu\nu\rho\sigma} \mathsf{G}^{\mu\nu}_{\mathsf{a}} \mathsf{G}^{\rho\sigma}_{\mathsf{a}} - \bar{\psi} \tilde{\mathsf{m}} \psi$ $\tilde{m} = e^{i\gamma_5\phi}$

- ightharpoonup in the under chiral rotation $\psi' = \psi e^{\frac{i \alpha \gamma_5}{2}}$ $\phi \rightarrow \phi' = \phi + \alpha, \ \theta \rightarrow \theta' = \theta - \alpha$
- $\blacktriangleright \bar{\theta} \equiv \theta + \phi$ is invariant and we can not rotate away the CP violation terms in the strong sector
- ▶ neutron electric dipole moment $\sim 10^{-14}$ $\bar{\theta}$ e cm and measurements give $|d_n| < 1.8 \times 10^{-26}$ e cm
- \blacktriangleright $\bar{\theta} \leq 10^{-12}$ (strong CP problem)

introduce $U(1)_{PQ}$ symmetry which is spontaneously broken and generates axion

$$
\mathcal{L}_a \supset \frac{a}{f_a} \frac{1}{32\pi^2} \epsilon_{\mu\nu\rho\sigma} G_a^{\mu\nu} G_a^{\rho\sigma}
$$

- \blacktriangleright from the axion potential we find that its VEV is $\langle a \rangle = -\bar{\theta} f_a$
- ▶ redefine $a_p = a \langle a \rangle$; $\langle a_p \rangle = 0$
- ▶ we got $\mathcal{L}_a \supset -\bar{\theta} \frac{1}{32\pi^2} \epsilon_{\mu\nu\rho\sigma} G_a^{\mu\nu} G_a^{\rho\sigma}$ which cancels \overline{CP} term in QCD $\mathcal L$
- \blacktriangleright in addition to solving the strong CP problem, axion is also a viable dark matter (DM) candidate

Axion-Photon Interaction

axion's two-photon interaction plays a key role in the majority of the experimental searches

$$
\mathcal{L} \supset -\frac{1}{4} g_{a\gamma\gamma} \, a \, F^{\mu\nu} \, \tilde{F}_{\mu\nu} = g_{a\gamma\gamma} \vec{E} \cdot \vec{B}
$$

- ▶ here, $g_{a\gamma\gamma}\propto f_a^{-1}$ and $m_a f_a \approx m_\pi f_\pi \sim (100\,\text{MeV})^2$
- \triangleright fo the case of axion-like particles (ALPs), particle's mass and its decay constant are treated as independent parameters

[New Directions for ALP Searches Combining Nuclear Reactors and Haloscopes](#page-0-0) 3/12 DPF-Pheno, May 2024

Detection via Axion/ALP Conversion in Magnetic Field

▶ Helioscope searches with CAST experiment: ALPs are produced in the Sun by Primakoff scattering and converted back to X-rays in the B-field

 \blacktriangleright Haloscopes: A microwave cavity is in a magnetic field, allowing the conversion of DM axions into photons. If the axion's mass matches the resonance frequency of the cavity, the power output experiences amplification

Axion/ALP Production at Nuclear Reactors

- Primakoff scattering of copiously produced photons in the reactor core generates ALP flux
- ▶ ALPs decay or scatter in nearby neutrino experiments (e.g. CONNIE, CONUS, MINER, TEXONO)

Axion Reactoscope

- ▶ Axions/ALPs are produced in the reactor core via Primakoff scattering of photons chiefly off \mathcal{U}^{235}
- \triangleright Axions/ALPs are converted in the B-field to detectable $\mathcal{O}(MeV)$ photons

[New Directions for ALP Searches Combining Nuclear Reactors and Haloscopes](#page-0-0) 6/12 DPF-Pheno, May 2024

Axion Reactoscope

[New Directions for ALP Searches Combining Nuclear Reactors and Haloscopes](#page-0-0) 7/12 DPF-Pheno, May 2024

Experimental Setup and Sensitivities

- ▶ For a successful measurement, a photon detection system should be placed behind the magnetized region
- \triangleright Regarding detectors, there is an option to use inorganic scintillators, e.g. Nal[Tl], LaBr3(Ce) for the detection of $\mathcal{O}(MeV)$ photons
- ▶ CAST also searched for MeV photons from ALP conversion (0904.2103) and based on that we made conservative background estimates of $\mathcal{O}(1)$ event per second
- **▶** for such case, g_{av} sensitivity is weakened by 1 order of magnitude compared to the ideal case with no backgrounds
- ▶ reactor-related backgrounds can be removed with proper shielding

Experimental Setup and Sensitivities

▶ nuclear reactor (ILL) and the resonant cavity experiment (GrAHal) in close proximity to each other (700 m) exist in Grenoble, France

- "ILL+GrAHal Available": $B = 9.5$ T, $R = 40$ cm and L=80 cm
- "ILL+GrAHal High B": $B = 43$ T, $R = 1.7$ cm and L=3.4 cm

Experimental Setup and Sensitivities

- ALP production at ILL and detection with ILL magnets
- ALP production at Bugey and detection with CAST at CERN
- "Optimal": Kashiwazaki-Kariwa power plant ($P \sim 8.2$ GW) + BabyIAXO

- a large portion of the yet uncovered parameter space can be probed
- ▶ astrophysical and cosmological constraints are not included
	- astrophysical ALP production can be suppressed (see scenarios motivated by the old PVLAS anomaly)

Reactoscope Opportunities at ORNL

 \blacktriangleright "HFIR+MAG009": $B = 14$ T. $R = 2.1$ cm. $l = 20$ cm

- magnet can be put at the distance of \sim 10 m from the reactor core
- \triangleright e.g. PROSPECT $\bar{\nu}$ detector is at the distance of 6.5 m

Summary

- ▶ ALPs can be copiously produced in nuclear reactors provided there is an g_{avx} interaction
- ▶ Through the same interaction, ALPs can convert back to photons in a magnetic field
- \blacktriangleright The experimental setup features a nuclear reactor alongside the adjacent magnetic field, an essential component in axion haloscope experiments
- ▶ Appropriate locations for conducing the "Axion reactoscope" experiment include Grenoble (France) and Oak Ridge National Laboratory
- ▶ There are regions in the parameter space where sensitivity projections exceed the existing laboratory limits

[New Directions for ALP Searches Combining Nuclear Reactors and Haloscopes](#page-0-0) 12 / 12 DPF-Pheno, May 2024