Massachusetts Institute of Technology +Tung X. Tran +Sarah R. Geller +David I. Kaiser

CLOSE ENCOUNTERS OF THE PRIMORDIAL KIND

2312.17217 Benjamin V. Lehmann

Blu-ray Disc

The dark matter parameter space

The dark matter parameter space

Primordial black holes as DM

Primordial black holes as DM

Primordial black holes as DM

only in "asteroid mass" range

1. The Solar System can detect PBH encounters

Precision measurements are sensitive to small deflections

1. The Solar System can detect PBH encounters

Precision measurements are sensitive to small deflections

2. Possible sensitivity to asteroid-mass range

Simple proof-of-principle calculation on a laptop

1. The Solar System can detect PBH encounters

Precision measurements are sensitive to small deflections

2. Possible sensitivity to asteroid-mass range

Simple proof-of-principle calculation on a laptop

3. Precision analysis starting now

Collaboration with Paris Observatory simulation group

Search for individual scatters with a target system

Search for individual scatters with a target system

Flux-limited

Search for individual scatters with a target system

 $M_{\rm PBH}\simeq 10^{-5}\,{\rm g}$

Flux-limited

Planck-scale PBHs

Search for individual scatters with a target system

 $M_{\rm PBH}\simeq 10^{-5}\,{\rm g}$

Flux-limited

Planck-scale PBHs

$$\Phi \lesssim 1 \, \text{yr}^{-1} \, \text{m}^{-2}$$

Search for individual scatters with a target system

$$M_{
m PBH} \simeq 10^{-5} \, {
m g}$$

Flux-limited

Planck-scale PBHs

$$\Phi \lesssim 1 \, \text{yr}^{-1} \, \text{m}^{-2}$$

Laboratory-scale (e.g. WINDCHIME)

Search for individual scatters with a target system

$$M_{
m PBH} \simeq 10^{-5} \, {
m g}$$

Flux-limited

Planck-scale PBHs

Search for individual scatters with a target system

$$M_{\rm PBH}\simeq 10^{-5}\,{\rm g}$$

Flux-limited

 $M_{\rm PBH}\gtrsim 10^{17}\,{\rm g}$

Planck-scale PBHs

Asteroid-mass PBHs

Search for individual scatters with a target system

$$M_{\rm PBH}\simeq 10^{-5}\,{\rm g}$$

Flux-limited

 $M_{\rm PBH}\gtrsim 10^{17}\,{\rm g}$

Planck-scale PBHs

3/day

Asteroid-mass PBHs

$$\Phi \lesssim 1\, \text{yr}^{-1}\,\text{au}^{-2}$$

Search for individual scatters with a target system

$$M_{\rm PBH}\simeq 10^{-5}\,{\rm g}$$

Flux-limited

 $M_{\rm PBH}\gtrsim 10^{17}\,{\rm g}$

Planck-scale PBHs

3/day

Asteroid-mass PBHs

Our hero: Ephemerides

Our hero: Ephemerides

Our hero: Ephemerides

Mars orbiters have had O(10 cm) precision for O(20 yr)!

Mars orbiters have had O(10 cm) precision for O(20 yr)!Let's model the impact of a PBH flyby on r(Earth-Mars).

Ben V. Lehmann

Precise Solar System modeling is a specialized task

Precise Solar System modeling is a specialized task

Let's estimate differences induced by a PBH flyby
Precise Solar System modeling is a specialized task

Let's estimate differences induced by a PBH flyby

Precise Solar System modeling is a specialized task

Let's estimate differences induced by a PBH flyby

Precise Solar System modeling is a specialized task

Let's estimate differences induced by a PBH flyby

$$\delta \mathbf{v} \approx \int \frac{\mathrm{d}x}{v_0} \frac{GM_{\mathrm{PBH}}\mathbf{b}}{(\mathbf{b}^2 + x^2)^{3/2}} = \frac{2GM_{\mathrm{PBH}}}{v_0 b^2} \mathbf{b}$$
$$\delta r = \delta v \times \Delta t \gtrsim \sigma_r \qquad b_{\mathrm{max}}(\Delta t) = \frac{2GM_{\mathrm{PBH}}}{v_0 \sigma_r} \times \Delta t$$
$$\sim 1 \text{ detectable per } \Delta t_{\mathrm{min}} \approx 26 \text{ yr} \left(\frac{M_{\mathrm{PBH}}}{10^{20} \text{ g}}\right)^{-1/3} \left(\frac{\sigma_r}{0.1 \text{ m}}\right)^{2/3}$$

Layer 2: Frequency-space structure

Layer 2: Frequency-space structure

Improve signal-to-noise over many cycles

Layer 2: Rates and constraints

Layer 2: Rates and constraints

Constraints are possible with full simulation precision (and careful statistical analysis)

all bodies — dissipation — SR/GR — spin-orbit coupling — ...

all bodies — dissipation — SR/GR — spin-orbit coupling — ...

Starting now: study of PBH flybys in INPOP21a

all bodies — dissipation — SR/GR — spin-orbit coupling — ...

Starting now: study of PBH flybys in INPOP21a

Potential for constraint (or discovery) from existing data

Conclusions

1. The Solar System is a PBH detector

The Solar System is a PBH detector Best sensitivity in asteroid-mass range

The Solar System is a PBH detector
Best sensitivity in asteroid-mass range
Constraint or discovery possible soon

The Solar System is a PBH detector
Best sensitivity in asteroid-mass range
Constraint or discovery possible soon

Not a boring answer after all!

A. M. Green and B. J. Kavanagh. Primordial Black Holes as a dark matter candidate. J. Phys. G, 48(4):043001, 2021. doi: 10.1088/1361-6471/abc534.