Axion-Like Particles at the Electron Ion Collider

Monica Leys - University of Pittsburgh In progress with Brian Batell and Keping Xie

Overview

_ ___ __

- Motivation
- Theoretical Background
- Phenomenology
- Simulation
- Analysis
- Results
- Outlook

Motivation (ALPs)

- > Axion-like particles (ALPs) pop up in many theories
 - Strong CP problem in quantum chromodynamics (QCD) can be solved via the existence of the axion [1]
 - Spontaneous approximate global symmetry breaking → light pseudo-Nambu Goldstone boson (pNGB) [2,3]
 - Compact dimensions, string theory [4]
- > ALPs are the subject of many ongoing searches
 - Collider searches at ATLAS/CMS at CERN [5,6] plus many others
 - Astroparticle and table-top precision searches

Motivation (EIC)

- Future Electron-Ion Collider (EIC) in the works at Brookhaven National Lab (BNL)
 - Will be capable of colliding electron, proton and lead ion beams
 - Good environment for studying a multitude of beyond the Standard Model (BSM) particles
 - Axion-like particles (ALPs) [7-10]
 - Heavy neutral leptons (HNLs) [11]
 - Dark photons [12]
 - Leptoquarks [13]
- Past EIC ALP searches considered flavor violating ALPs, photon coupled ALPs produced in coherent nuclear scattering
- Our searches focus on higher mass, promptly decaying photon coupled ALPs produced mainly through both elastic/coherent and inelastic scattering

Theoretical Background

Photon-coupled ALP benchmark model:

$$\Delta \mathcal{L} = rac{1}{2} \partial_\mu a \, \partial^\mu a - rac{1}{2} m_a^2 a^2 - g_{a\gamma\gamma} \, a F_{\mu
u} \widetilde{F}^{\mu
u}$$

- ➤ Conventionally swap g_{ayy} for energy scale 1/4Λ
- > ALP decay width:

$$\Gamma(a\to\gamma\gamma)=\frac{m_a^3}{4\pi}g_{a\gamma\gamma}^2$$

- Focus only on short-lived ALPs:
 - o m_a ∈ [1-10²] GeV
 - о g_{аγγ} ∈ [10⁻²-1] TeV⁻¹
- > Manifests as narrow width $(m_a >> \Gamma_a)$

Phenomenology (Signal)

- > Focus on e^-p and e^-Pb collisions (need PDFs)
- Main ALP production through photon fusion, s-channel dominates
- > Narrow diphoton resonance $(m_{YY} \sim m_a)$
- Both elastic and inelastic processes
 - Elastic: X = p / Pb
 - Inelastic: X = j / jj
- Elastic refers to coherent scattering in the Pb case

Phenomenology (PDFs)

- ➢ Proton PDF:
 - Photon: CT18qed [14,15]
 - Quark/Gluon: CT18qed inherited from CT18 NNLO QCD [16]
- ➤ Lead Ion PDF:
 - Elastic/inelastic parts taken from proton/neutron PDFs
 - Ion's coherent photon PDF developed by Keping Xie
- ➢ Electron PDF:
 - Improved Weizsäcker-Williams approximation [17]

Phenomenology (Search Strategies)

- Inclusive diphoton: final state includes two photons + anything
- Exclusive diphoton: final state includes two photons ONLY
- Elastic/Coherent diphoton: final state includes two photons + intact proton/Pb nucleus
 - Past searches carried out at ATLAS and CMS [5,6]
 - Most lucrative strategy
- Associated production: final state includes 2 photons + electron + jet(s)
 - Previously proposed EIC search strategy [8]

Phenomenology (Background)

- Standard Model (SM) Inelastic
 - Inclusive, exclusive and associated searches
- Meson decays from hadronic activity cloud diphoton spectrum at particular masses

A

- Light-by-light (LbL) scattering
 - Subleading background
 - Inclusive, exclusive and elastic/coherent searches

DPF-Pheno 2024 Parallel Talk

Phenomenology (Beams and Detector, Fiducial Cuts)

Electron-Proton collisions:

$$E_e = 18 \text{ GeV}, \ E_p = 275 \text{ GeV}, \ \mathcal{L}_{ep} = 100 \text{ fb}^{-1}$$

Electron-Lead Ion collisions:

$$E_e = 18 \text{ GeV}, E_A/A = 110 \text{ GeV}, \mathcal{L}_{eA}/A = 10 \text{ fb}^{-1}$$

> Energy and angular fiducial cuts [18]: $p^{\gamma} > 1 C_0 V_{\alpha} | m | < 2.5 A P_{\alpha} | m > 0.4 A P_{\alpha}$

 $p_T^{\gamma} > 1 \text{ GeV}, \ |\eta_{\gamma}| < 3.5, \ \Delta R_{\gamma\gamma,\gamma\ell,\gamma j} > 0.4 \quad \Delta R = \sqrt{(\Delta \eta)^2 + (\Delta \phi)^2}$

Simulation (Electron-Proton)

11/22

Simulation (Electron-Proton)

- Inclusive search:
 - background peaks as diphoton transverse momentum → 0 and diphoton acoplanarity → π (2-2 kinematics)
 - Implement cuts similar to ATLAS/CMS treatment [5,6]:

$$p_T^{\gamma\gamma} < 1 \text{ GeV}, \ A_\phi = 1 - |\Delta \phi_{\gamma\gamma}|/\pi < 0.01$$

■ Efficiencies: inelastic (35%), elastic (48%)

- \circ Invariant mass window cut: $|\Delta m| = |m_{\gamma\gamma} m_a| < 1 {
 m ~GeV}$
 - Efficiencies: m_a = 3/10/50 GeV (57%/2%/2x10⁻⁵)
- Inelastic background dominates, LbL negligible in comparison

Simulation (Electron-Proton)

- Exclusive search:
 - Same as inclusive with reversed fiducial cuts:

 $p_T^{\gamma} < 1 \text{ GeV}, \ |\eta_{\gamma}| > 3.5, \ \Delta R_{\gamma\gamma,\gamma\ell,\gamma j} < 0.4$

- Additional cut efficiency negligible compared to inclusive search
- Elastic search:
 - Same cuts as inclusive, slight reduction in both signal/background
- > Associated search:
 - Fiducial cuts: $p_T^e > 1 \,\, {
 m GeV}, \,\, p_T^j > 5 \,\, {
 m GeV}, \,\, |\eta_{e,j}| < 3.5, \,\, \Delta R_{ij} > 0.4$
 - New phase space available (2-4 kinematics)

Simulation (Electron-Proton)

Simulation (Electron-Lead Ion)

Inclusive/Associated searches:

- Same cuts with similar efficiencies as proton case
- ➤ Exclusive search:
 - Neglected completely
- ➤ Coherent search:
 - Same cuts with similar efficiencies as proton case
 - Z² enhancement improves signal compared to proton case

Analysis

- > Plot sensitivity in parameter space of the model ($m_a 1/\Lambda$ plane)
- > Narrow width cross section decomposition:

$$\sigma(m_a, g_{a\gamma\gamma}) = g_{a\gamma\gamma}^2 \sigma(m_a) \mathcal{B}(a \to \gamma\gamma)$$

> Sensitivity [19]:
$$S = \frac{s}{\sqrt{s+b+\varepsilon^2(s+b)^2}} = 2$$

- S = 2 equivalent to 2σ confidence level
- the systematic uncertainty \mathcal{E} taken to be 0.1% (0-1% range)

Analysis (Electron-Proton)

- All search strategies
 probe new parameter
 space
 - Elastic search yields best results, almost 10x reach improvement for low mass
 - Associated search improves lowest mass reach

17/22

Analysis (Electron-Lead Ion)

- Overall improvement
 from proton case
 - Most improvement from coherent search, extends reach for low mass + some larger masses

Results

- Coherent ion search:
 - 10^2 better from 2 GeV < m_a < 5 GeV
 - factor of a few better from
 5 GeV < m_a < 30 GeV
- Associated ion search:
 - factor of a few better from 1 GeV< m_a < 2 GeV
- Inclusive proton/inclusive ion searches:
 - \circ mild improvement in region 40 GeV < m_a < 100 GeV

Outlook

- > ALPs are well motivated extension of SM
- EIC can probe uncharted parameter space for photon-coupled ALPs in the few - 100 GeV mass range
- ➢ Future work to search for other ALP signals at the EIC
 - Other SM-ALP couplings
 - Long lived/displaced vertex
 - Invisible ALP decays/missing energy

References

[1] R. D. Peccei and H. R. Quinn, "CP Conservation in the Presence of Instantons," *Phys. Rev. Lett.* 38 (1977) 1440–1443.

[2] F. Wilczek, "Problem of Strong P and T Invariance in the Presence of Instantons," Phys. Rev. Lett. 40 (1978) 279–282.

[3] S. Weinberg, "A New Light Boson?," Phys. Rev. Lett. 40 (1978) 223–226.

[4] P. Svrcek and E. Witten, "Axions In String Theory," JHEP 06 (2006) 051, arXiv:hep-th/0605206.

[5] **CMS** Collaboration, A. M. Sirunyan et al., "Evidence for light-by-light scattering and searches for axion-like particles in ultraperipheral PbPb collisions at √sNN = 5.02 TeV," *Phys. Lett. B* **797** (2019) 134826, arXiv:1810.04602 [hep-ex].

[6] **ATLAS** Collaboration, G. Aad *et al.*, "Measurement of light-by-light scattering and search for axion-like particles with 2.2 nb-1 of Pb+Pb data with the ATLAS detector," *JHEP* **03** (2021) 243, arXiv:2008.05355 [hep-ex]. [Erratum: JHEP 11, 050 (2021)].

[7] H. Davoudiasl, R. Marcarelli, and E. T. Neil, "Lepton-flavor-violating ALPs at the Electron-Ion Collider: a golden opportunity," *JHEP* 02 (2023) 071, arXiv:2112.04513 [hep-ph].

[8] Y. Liu and B. Yan, "Searching for the axion-like particle at the EIC*," Chin. Phys. C 47 no. 4, (2023) 043113, arXiv:2112.02477 [hep-ph].

[9] C. P. Oliveira, D. Hadjimichef, and M. V. T. Machado, "Production of the axion-like particles on electron–nucleus and ultraperipheral heavy ion collisions," *J. Phys. G* 48 no. 8, (2021) 085005.

[10] B. Reuven et al., "Probing axion-like particles at the Electron-Ion Collider," arXiv:hep-th/2310.08827.

[11] B. Batell, T. Ghosh, T. Han, and K. Xie, "Heavy neutral leptons at the Electron-Ion Collider," JHEP 03 (2023) 020, arXiv:2210.09287 [hep-ph].

References

[12] B. Yan, "Probing the dark photon via polarized DIS scattering at the HERA and EIC," *Phys. Lett. B* 833 (2022) 137384, arXiv:2203.01510 [hep-ph].

[13] M. Gonderinger and M. J. Ramsey-Musolf, "Electron-to-Tau Lepton Flavor Violation at the Electron-Ion Collider," *JHEP* **11** (2010) 045, arXiv:1006.5063 [hep-ph]. [Erratum: JHEP 05, 047 (2012)].

[14] **CTEQ-TEA** Collaboration, K. Xie, T. J. Hobbs, T.-J. Hou, C. Schmidt, M. Yan, and C. P. Yuan, "Photon PDF within the CT18 global analysis," *Phys. Rev. D* **105** no. 5, (2022) 054006, arXiv:2106.10299 [hep-ph].

[15] K. Xie, B. Zhou, and T. J. Hobbs, "The Photon Content of the Neutron," arXiv:2305.10497 [hep-ph].

[16] T.-J. Hou *et al.*, "New CTEQ global analysis of quantum chromodynamics with high-precision data from the LHC," *Phys. Rev. D* **103** no. 1, (2021) 014013, arXiv:1912.10053 [hep-ph].

[17] S. Frixione, M. L. Mangano, P. Nason, and G. Ridolfi, "Improving the Weizsacker-Williams approximation in electron - proton collisions," *Phys. Lett. B* **319** (1993) 339–345, arXiv:hep-ph/9310350.

[18] R. Abdul Khalek *et al.*, "Science Requirements and Detector Concepts for the Electron-Ion Collider: EIC Yellow Report," *Nucl. Phys. A* **1026** (2022) 122447, arXiv:2103.05419 [physics.ins-det].

[19] Particle Data Group Collaboration, R. L. Workman et al., "Review of Particle Physics," PTEP 2022 (2022) 083C01.