

DPF-PHENO 2024

Probing effective field theory operators in top quark pair events in the lepton+jets channel using charge asymmetry and angular variables

by <u>Ricardo Escobar Franco^[1], Cecilia E. Gerber^[1], Robert Schoefbeck^[2], Beren Ozek Cetinok^[1], and Titas Roy^[1]</u>

> ^[1]University of Illinois, Chicago, IL, USA ^[2]Institut fuer Hochenergiephysik, Vienna, Austria

rescob8@uic.edu

Overview

- Top quark physics
- Charge Asymmetry measurement
- Angular Variables

2

Overview

- Top quark physics
- Charge Asymmetry measurement
- Angular Variables
- Standard Model Effective Field Theory
- Correlations in Constraints
- Complimentary Observables

• Heaviest and most precisely^[1] measured of all the Standard Model (SM) quarks.

<u>Top quark lifetime</u>

[1] https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/CONFNOTES/ATLAS-CONF-2023-066/ rescob8@uic.edu

extreme mass \implies extreme instability \implies extremely short lifetime, τ_{top}

Hadronization scale **Spin Decorrelation scale** $\tau_{top} \approx 10^{-25} s$ << $\frac{1}{\Lambda_{OCD}} \approx 10^{-24} s$ << $\frac{m_t}{\Lambda_{QCD}^2} \approx 10^{-21} s$

• Heaviest and most precisely^[1] measured of all the Standard Model (SM) quarks.

[1] https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/CONFNOTES/ATLAS-CONF-2023-066/ rescob8@uic.edu

extreme mass \implies extreme instability \implies extremely short lifetime, τ_{top}

- Hadronization scale Spin Decorrelation scale $\tau_{top} \approx 10^{-25} s$ << $\frac{1}{\Lambda_{OCD}} \approx 10^{-24} s$ << $\frac{m_t}{\Lambda_{OCD}^2} \approx 10^{-21} s$

following channels:

• Top quarks primarily decay into a W boson and b quark so a $t\bar{t}$ pair can decay into one of the

following channels:

• Top quarks primarily decay into a W boson and b quark so a $t\bar{t}$ pair can decay into one of the

following channels:

- $t\bar{t}$ pairs are produced with a small "forward-central" charge asymmetry
 - ⇒ higher order corrections enhance this asymmetry
 - this small charge asymmetry (A_c) has been measured

rescob8@uic.edu

• Top quarks primarily decay into a W boson and b quark so a $t\bar{t}$ pair can decay into one of the

following channels:

- $t\bar{t}$ pairs are produced with a small "forward-central" charge asymmetry
 - \implies higher order corrections enhance this asymmetry
 - this small charge asymmetry (A_c) has been measured
- individual top quark are produced unpolarised
 - \implies spins of top quark pairs are still strongly correlated

correlations observed in angular distributions of decay products 4

rescob8@uic.edu

• Top quarks primarily decay into a W boson and b quark so a $t\bar{t}$ pair can decay into one of the

<u>Charge Asymmetry^[1] (Physics Letters B)</u>

- Optimized for top quark pairs produced with <u>large Lorentz boosts</u> which have enhanced asymmetry due to valence quarks carrying larger fraction of proton's momentum
- Results corrected for detector and acceptance effects using a binned maximum likelihood fit

[1] https://doi.org/10.1016/j.physletb.2023.137703 rescob8@uic.edu

<u>Charge Asymmetry^[1] (Physics Letters B)</u>

- Optimized for top quark pairs produced with <u>large Lorentz boosts</u> which have enhanced asymmetry due to valence quarks carrying larger fraction of proton's momentum
- Results corrected for detector and acceptance effects using a binned maximum likelihood fit

$$A_{C} = \frac{N(\Delta |y| > 0) - N(\Delta |y| < 0)}{N(\Delta |y| > 0) + N(\Delta |y| < 0)}$$

- y = rapidity of the top quark (antiquark)
- $\cdot \Delta |y| = |y_t| |y_{\overline{t}}|$

[1] https://doi.org/10.1016/j.physletb.2023.137703 rescob8@uic.edu

<u>Charge Asymmetry^[1] (Physics Letters B)</u>

• Looking forward, the analysis will be improved in the following ways:

	Published Ac	Optimized A _c
Invariant Mass of top quarks	$M_{t\bar{t}} > 750 \; GeV$	$M_{t\bar{t}} > 0 \; GeV$
Object selection	only high-p _T leptons	includes low-p _T isolated leptons
Background Suppression	event selection	Deep Neural Network

[1] https://doi.org/10.1016/j.physletb.2023.137703 rescob8@uic.edu

• Measurement will be at <u>reconstruction level</u> to maintain handle of systematic uncertainties

Charge Asymmetry^[1] (Physics Letters B)

• Looking forward, the analysis will be improved in the following ways:

	Published Ac	Optimized A _c
Invariant Mass of top quarks	$M_{t\bar{t}} > 750 \; GeV$	$M_{t\bar{t}} > 0 \; GeV$
Object selection	only high-p _T leptons	includes low-p _T isolated leptons
Background Suppression	event selection	Deep Neural Network

- Idea is to combine precise SM measurement of:
 - charge asymmetry
 - invariant mass
 - angular variables
- To be input for an **EFT interpretation**

[1] https://doi.org/10.1016/j.physletb.2023.137703 rescob8@uic.edu

• Measurement will be at <u>reconstruction level</u> to maintain handle of systematic uncertainties

Angular Varibables

• For I+jets channel one can choose the following decay products of the top quarks:

- lepton for leptonically decaying top quark
- **b-quark** for <u>hadronically decaying</u> top quark

rescob8@uic.edu

Angular Varibables

• For I+jets channel one can choose the following decay products of the top quarks:

- lepton for leptonically decaying top quark
- **b-quark** for <u>hadronically decaying</u> top quark

• The following angular distributions^[1] involve the **azimuthal angles** of the chosen decay products:

$$\frac{d\sigma}{d(\phi-\bar{\phi})} \propto 1 + \left(\frac{\pi}{4}\right)^2 \kappa \bar{\kappa} \left[\left(\frac{C^{11}+C^{22}}{2}\right) \cos(\phi-\bar{\phi}) + \frac{d\sigma}{d(\phi+\bar{\phi})} \propto 1 + \left(\frac{\pi}{4}\right)^2 \kappa \bar{\kappa} \left[\left(\frac{C^{11}-C^{22}}{2}\right) \cos(\phi+\bar{\phi}) + \frac{d\sigma}{d(\phi+\bar{\phi})} \right] \right]$$

[1] https://doi.org/10.48550/arXiv.1212.4888 rescob8@uic.edu

<u>SM Effective Field Theory Framework</u>

• The SM Effective Field Theory (SMEFT) Framework parameterizes new physics (NP) in terms of higher-dimension gauge-invariant operators, \mathcal{O}_i :

$$\mathscr{L}_{EFT} = \mathscr{L}_{SM}$$

- $\Lambda = NP$ mass scale
- \mathcal{O}_i = products of SM fields that describe new interactions
- c_i = Wilson coefficients (WCs) that describe the strength of the corresponding interaction

<u>SM Effective Field Theory Framework</u>

• The SM Effective Field Theory (SMEFT) Framework parameterizes new physics (NP) in terms of higher-dimension gauge-invariant operators, \mathcal{O}_i :

$$\mathscr{L}_{EFT} = \mathscr{L}_{SM} + \sum_{\forall i,n \ge 5} \frac{c_i^{(n)}}{\Lambda^{n-4}} \mathscr{O}_i^{(n)} + \dots$$

- $\Lambda = NP$ mass scale
- \mathcal{O}_i = products of SM fields that describe new interactions
- All odd-dimension operators violate lepton and/or baryon number conservation, so we don't consider them.
- **Dim-6 operators** are least supressed by NP mass scale thus we focus on those.
- Collection of operators that affect $t\bar{t}$ production:

 $\mathcal{O}_{Qa}^{1,1}, \mathcal{O}_{Qa}^{3,1}, \mathcal{O}_{Qa}^{1,8}, \mathcal{O}_{Qa}^{3,8}, \mathcal{O}_{Qu}^{1}, \mathcal{O}_{Qu}^{8}, \mathcal{O}_{Qu}^{1}, \mathcal{O}_{Qu}^{0}, \mathcal{O}_{Qd}^{1}, \mathcal{O}_{Qd}^{$

rescob8@uic.edu

• c_i = Wilson coefficients (WCs) that describe the strength of the corresponding interaction

$$\mathcal{O}_{Qd}^{8}, \mathcal{O}_{tq}^{1}, \mathcal{O}_{tq}^{8}, \mathcal{O}_{tu}^{1}, \mathcal{O}_{tu}^{8}, \mathcal{O}_{td}^{1}, \mathcal{O}_{td}^{8}, and \mathcal{O}_{tG}^{I}$$

8 MAY 2024

Correlations in Constraints

- Individual fits, one WC floats during fit
- Marginalised fits, multiple WC's float during fit
- "blind directions" in WC space, as seen below^[1]

• Correlations between effects of certain operators can conspire to avoid constraints known as

<u>Correlations in Constraints</u>

- Individual fits, one WC floats during fit
- Marginalised fits, multiple WC's float during fit
- "blind directions" in WC space, as seen below^[1]

Different type of input data with "orthogonal" blind direction is complementary in fit 9 rescob8@uic.edu **MAY 2024**

• Correlations between effects of certain operators can conspire to avoid constraints known as

 $c_{tq}^8 \equiv C_{qu}^{8(ii33)},$

vertical axis:

 $O_{au}^{8(ijkl)} = (\bar{q}_i \gamma^\mu T^A q_j) (\bar{u}_k \gamma_\mu T^A u_l)$ horizontal axis: $c_{Qq}^{1,8} \equiv C_{qq}^{1(i33i)} + 3C_{qq}^{3(i33i)}$ $O_{aq}^{1(ijkl)} = (\bar{q}_i \gamma^{\mu} q_j) (\bar{q}_k \gamma_{\mu} q_l),$

• Effects of operators on **angular** and **asymmetry** distributions, ξ_{kk} and $\Delta |\eta|$:

rescob8@uic.edu

• Effects of operators on **angular** and **asymmetry** distributions, ξ_{kk} and $\Delta |\eta|$:

rescob8@uic.edu

• Effects of operators on **angular** and **asymmetry** distributions, ξ_{kk} and $\Delta |\eta|$:

rescob8@uic.edu

• Effects of operators on **angular** and **asymmetry** distributions, ξ_{kk} and $\Delta |\eta|$:

rescob8@uic.edu

MAY 2024

Observe complimentary constraining power in WC space

CMS Simulation · Private Work

1.8

.6

SIN

10

<u>Summary/Outlook</u>

- Working to optimize our charge asymmetry measurement
- Investigating new angular variables in our ttbar system
- Will use SMEFT to interpret any observed deviations from SM predictions
 - interpretation is based on operators that affect ttbar production
- Observed complimentary constraining power in different types of input data
 - we hope to improve constraints of marginalised fits with this strategy

• this time at reconstruction level to maintain handle on systematic uncertainties

<u>Summary/Outlook</u>

- Working to optimize our charge asymmetry measurement
- Investigating new angular variables in our ttbar system
- Will use SMEFT to interpret any observed deviations from SM predictions
 - interpretation is based on operators that affect ttbar production
- Observed complimentary constraining power in different types of input data
 - we hope to improve constraints of marginalised fits with this strategy

- Optimization of ttbar system reconstruction is also being investigated
 - Emphasis of getting accurate directions of angular variables
- Different methods to extract constraints for WCs are being investigated

rescob8@uic.edu

• this time at reconstruction level to maintain handle on systematic uncertainties

Time for questions and comments

rescob8@uic.edu

BACKUP: Production Mechanisms

 $q\bar{q}$ s-channel

gg s-channel

rescob8@uic.edu

• A top quark antiquark pair (ttbar) can be produced, at leading order (LO), by the following:

gg u-channel

BACKUP: Object/Event Selection

- Triggers with isolation for low p_T leptons (e and μ) but not for high p_T leptons.
- AK4 and AK8 PUPPI jets are used.
- MET is negative vector sum of p_T of all PF candidates after being scaled by PUPPI algorithm.
- The DeepJet algorithm is used for b-tagging on AK4 jets.
- The DeepAK8-MD algorithm is used for t-tagging on AK8 jets.
- >2 AK4 jets are required and at least one has to be b-tagged.

BACKUP: Backgrounds

Backgrounds

QCD multijet background events:

 $\Delta R_{min} \left(l, jet \right) > 0.4$

backgrounds and our ttbar signals.

• The following 2D cut is incorporated into the event selection of high-p_T leptons to reduce the

$$|| \quad p_{T,rel}(l,jet) > 25 \ GeV$$

• We use a Deep Neural Network (DNN) to classify events originating from the single-top, V+jets

BACKUP: Event Reco

Event Reconstruction

• The ttbar system is reconstructed once the 4-vectors of the objects in the event selection are assigned to the leptonic or hadronic decaying top.

- The lepton and MET are always assigned to the leptonic decay.
- All the jets in event are considered in every possible permutation of jet assignments, each permutation is referred to as a candidate.

rescob8@uic.edu

BACKUP: Event Reco

Event Reconstruction

jet into the resolved and merged topology, respectively.

- Each event then has $-3^{N_{jets}}$ or $-2^{N_{jets}}$ candidates to consider in the resolved and merged topology.

$$\left[\frac{M_{\rm lep} - \bar{M}_{\rm lep}}{\sigma_{\bar{M}_{\rm lep}}}\right]^2 + \left[\frac{M_{\rm had} - \bar{M}_{\rm had}}{\sigma_{\bar{M}_{\rm had}}}\right]^2$$
31

rescob8@uic.edu

• Events are sorted into two topologies based on the absence or presence of a top-tagged AK8

• The best candidates is chosen by the one that minimizes a $\chi^2\left(M_{lep}^{cand}, M_{had}^{cand}\right)$ function.

BACKUP: DeepAK8 Tagger

rescob8@uic.edu

BACKUP: DeepAK8 Tagger

Currently using the UHH2 analysis framework^[1]. Recent studies look at b-scores of AK4 jets in resolved topology and AK8 subjets in merged topology. We see the expected distribution amongst our jet collections.

rescob8@uic.edu

BACKUP: Candidate Kinematic Distributions

The distributions are shown <u>after</u> the likelihood normalization.

rescob8@uic.edu

BACKUP: Likelihood Function

• For each channel k (specific bin and category) the corresponding likelihood function is:

- P (n; μ) represents the Poisson probability of observing n events when μ are ex-pected
- i, j are number of bins
- A_{ji} is the response matrix, which gives the probability for an event reconstructed in bin j to have been produced in bin i
- μ_i are signal events
- b_i are background events
- $N(d_u)$ are priors for nuisance parameters

rescob8@uic.edu

BACKUP: Chi2 Effeciency

Entries

8591382

 $\mathbf{E}_{X^2<30} = 93\%$

MERGED Entries 8591382 Events 7.145 Mean Std Dev 11.85 4678 Overflow Integral 1.147e+05 10⁴ 10³ 10² 10 20 90 100 χ² (merged) '0 50 70 80 10 30 40 60

 $\mathbf{E}_{X^2<30} = 93\%$

rescob8@uic.edu

 $\mathbf{E}_{X^2 < 30 \&\& Matchable} = 22\%$

 $E_{X^2 < 30 \&\& Matchable} = 46\%$

pass matching requirements

BACKUP: B-Jets in Merged Topology

rescob8@uic.edu

BACKUP: S.C. Framework^[1]

$$\mathcal{R}^{I} = f_{I}[A^{I}] \otimes \mathbf{1} + \tilde{B}_{i}^{I+}\sigma^{i} \otimes \mathbf{1} + \tilde{B}_{i}^{I-}\mathbf{1} \otimes \sigma^{i} + \tilde{C}_{ij}^{I}\sigma^{i} \otimes \sigma^{j}]$$

• Angular distribution that encodes the spin structure of the ttbar system:

$$\frac{1}{\sigma} \frac{d\sigma}{d\Omega_{+} d\Omega_{-}} = \frac{1}{(4\pi)^{2}} \left(1 + \mathbf{B}'_{1} \cdot \hat{d}_{t} + \mathbf{B}'_{2} \cdot \hat{d}_{\overline{t}} - \hat{d}_{t} \cdot C' \cdot \hat{d}_{\overline{t}} \right)$$

- $\hat{d}_{t}, \hat{d}_{\bar{t}}$ = directions of their decay products.

[1] <u>https://doi.org/10.1007/JHEP12(2015)026</u>

rescob8@uic.edu

• Parameterized production spin density matrix for the ttbar system in the following manner:

• $d\Omega_{+/-}$ = differential solid angles of each decacy product from the top and antitop quark

BACKUP: Bernreuther

basis constructed in the rest frame of the top quark:

antiquark spin operators with respect to a chosen reference axes \hat{a} and \hat{b} :

$$\mathbf{B}_{1}(\hat{\mathbf{a}}) = P(\hat{\mathbf{a}})\kappa_{\hat{d}_{t}} \quad \mathbf{B}_{2}(\hat{\mathbf{b}}) = -\bar{P}(\hat{\mathbf{b}})\kappa_{\hat{d}_{\bar{t}}} \quad C(\hat{\mathbf{a}},\hat{\mathbf{b}}) = \kappa_{\hat{d}_{t}}\kappa_{\hat{d}_{\bar{t}}}\frac{\sigma(\uparrow\uparrow) + \sigma(\downarrow\downarrow) - \sigma(\uparrow\downarrow) - \sigma(\downarrow\uparrow)}{\sigma(\uparrow\uparrow) + \sigma(\downarrow\downarrow) + \sigma(\uparrow\downarrow) + \sigma(\downarrow\uparrow) + \sigma(\downarrow\uparrow)}$$

$$P(\hat{\mathbf{a}}) = \langle 2\mathbf{S}_t \cdot \hat{\mathbf{a}} \rangle \quad \bar{P}(\hat{\mathbf{b}}) = \langle 2\mathbf{S}_{\bar{t}} \cdot \hat{\mathbf{b}} \rangle$$

rescob8@uic.edu

Polarization and correlation structure functions are decomposed in the following orthonormal

$$\hat{k} = t \hat{o} p_{+\frac{2}{3}} \quad \hat{r} = \frac{1}{r} (\hat{p} - y \hat{k}), \quad \hat{n} = \frac{1}{r} (\hat{p} \times \hat{k})$$
$$y = \hat{k} \cdot \hat{p}, \qquad r = \sqrt{1 - y^2}$$

• The structure functions are ultimately tied back to the expectation value of the top quark and

 $C = -9\langle \xi \rangle$

BACKUP: Private EFT Samples

- Preliminary investigation: effect of c_{tu}^{1} on hadronic b quark kinematics.

rescob8@uic.edu

• The effects of these operators is investigated using privately produced MadGraph samples.

BACKUP: Bernreuther Xi

Bernreuther's angular distributions capture spin correlation information:

Using this angular distribution we can use any set of reference axes \hat{a} and \hat{b} to project the lepton's direction onto.

For example, we can use each axes from the basis $\{\hat{n}, \hat{r}, \hat{k}\}$ and construct all combinations of the product ξ and we get:

$$\begin{aligned} & (\hat{l_{+}} \cdot \hat{n})(\hat{l_{-}} \cdot \hat{n}) \quad (\hat{l_{+}} \cdot \hat{n})(\hat{l_{-}} \cdot \hat{r}) \quad (\hat{l_{+}} \cdot \hat{n})(\hat{l_{-}} \cdot \hat{k}) \\ & \hat{\xi}_{ij} = (\hat{l_{+}} \cdot \hat{r})(\hat{l_{-}} \cdot \hat{n}) \quad (\hat{l_{+}} \cdot \hat{r})(\hat{l_{-}} \cdot \hat{r}) \quad (\hat{l_{+}} \cdot \hat{r})(\hat{l_{-}} \cdot \hat{k}) \\ & (\hat{l_{+}} \cdot \hat{k})(\hat{l_{-}} \cdot \hat{n}) \quad (\hat{l_{+}} \cdot \hat{k})(\hat{l_{-}} \cdot \hat{r}) \quad (\hat{l_{+}} \cdot \hat{k})(\hat{l_{-}} \cdot \hat{k}) \end{aligned}$$

These distributions of these 9 variables capture all the spin-correlation information contained in the decay particle's direction of flight.

rescob8@uic.edu

$$\cos \theta_+ = \hat{\ell}_+ \cdot \hat{\mathbf{a}}, \qquad \cos \theta_- = \hat{\ell}_-$$

BACKUP: Bernreuther vs Baumgart

Baumgart's distribution of decay angles:

$$\frac{d^4\sigma}{d\Omega\,d\bar{\Omega}} \propto 1 + \kappa\,\vec{P}\cdot\hat{\Omega} + \bar{\kappa}\,\vec{\bar{P}}\cdot\hat{\bar{\Omega}} + \kappa\bar{\kappa}\,\hat{\Omega}\cdot C\cdot\hat{\bar{\Omega}}$$

$$\frac{d^2\sigma}{d\cos\theta\,d\cos\bar{\theta}} \propto 1 + \kappa P^3\cos\theta + \bar{\kappa}\,\bar{P}^3\cos\bar{\theta} + \kappa\bar{\kappa}\,C^{33}\cos\theta\cos$$

$$\frac{d\sigma}{d(\cos\theta\cdot\cos\bar{\theta})} \propto (1+\kappa\bar{\kappa}\,C^{33}\cos\theta\cdot\cos\bar{\theta})\,\log\left(\frac{1}{|\cos\theta\cdot\cos\bar{\theta}|}\right)$$

$$\frac{d\sigma}{d\cos\theta}\,\propto\,1+\kappa\,P^3\cos\theta$$

$$\frac{d\sigma}{d(\phi - \bar{\phi})} \propto 1 + \left(\frac{\pi}{4}\right)^2 \kappa \bar{\kappa} \left[\left(\frac{C^{11} + C^{22}}{2}\right) \cos(\phi - \bar{\phi}) + \left(\frac{C^{21} - C^{12}}{2}\right) \sin(\phi - \bar{\phi}) \right] \\ \frac{d\sigma}{d(\phi + \bar{\phi})} \propto 1 + \left(\frac{\pi}{4}\right)^2 \kappa \bar{\kappa} \left[\left(\frac{C^{11} - C^{22}}{2}\right) \cos(\phi + \bar{\phi}) + \left(\frac{C^{21} + C^{12}}{2}\right) \sin(\phi + \bar{\phi}) \right]$$

rescob8@uic.edu

Bernreuther's angular distribution for dilepton decays: $\hat{\overline{\Omega}} \qquad \frac{1}{\sigma} \frac{d\sigma}{d\Omega_+ d\Omega_-} = \frac{1}{(4\pi)^2} \Big(1 + \mathbf{B}_1' \cdot \hat{\ell}_+ + \mathbf{B}_2' \cdot \hat{\ell}_- - \hat{\ell}_+ \cdot C' \cdot \hat{\ell}_- \Big)$ $\cos\bar{\theta} \qquad \frac{1}{\sigma} \frac{d\sigma}{d\cos\theta_+ d\cos\theta_-} = \frac{1}{4} \Big(1 + B_1 \,\cos\theta_+ + B_2 \,\cos\theta_- - C \,\cos\theta_+ \cos\theta_- \Big)$ $\overline{\overline{\theta}} = \frac{1}{\sigma} \frac{d\sigma}{d\xi} = \frac{1}{2} \left(1 - C\xi \right) \ln\left(\frac{1}{|\xi|}\right) \qquad \xi = \cos\theta_+ \cos\theta_ \frac{1}{\sigma} \frac{d\sigma}{d\cos\theta_{\pm}} = \frac{1}{2} \left(1 + B_{1,2} \cos\theta_{\pm} \right)$ $ar{\phi})$

No azimuthal analog in Bernreuther

BACKUP: Berneuther/Spin Analyser

decay product can be seen below:

Table 1: Born results for spin analysing power of d, b, u, least energetic light jet and thrust axis.

	$m_b=0,\Gamma_W ightarrow 0$	$m_b = 0, \Gamma_W$ kept	$m_b = 5 \text{ GeV}, \Gamma_W \rightarrow 0$
κ_{d}^{0}	1	1	1
κ_b^0	-0.40622	-0.40867	-0.40553
κ_u^0	-0.31817	-0.31091	-0.31964
κ_j^0	0.50774	0.51088	0.50708
κ_T^0	-0.31712	-0.31782	-0.31597

• "In practice the most important spin analysers are, as far as non-leptonic top decays are the jet result is small."

rescob8@uic.edu

Table 2: QCD-corrected results for spin analysing powers.

	partons	jets, E-alg.	jets, D-alg.
κ _đ	0.9664(7)	0.9379(8)	0.9327(8)
$\delta^{QCD}_{ar{d}}$ [%]	-3.36 ± 0.07	-6.21 ± 0.08	-6.73 ± 0.08
Кь	-0.3925(6)	-0.3907(6)	-0.3910(6)
δ_b^{QCD} [%]	-3.80 ± 0.15	-4.24 ± 0.15	-4.18 ± 0.15
κ _u	-0.3167(6)	-0.3032(6)	-0.3054(6)
δ_u^{QCD} [%]	$+1.39 \pm 0.19$	-2.93 ± 0.19	-2.22 ± 0.19
κ _j	—	0.4736(7)	0.4734(7)
δ_{j}^{QCD} [%]	_	-7.18 ± 0.13	-7.21 ± 0.13
κ _T	-0.3083(6)	—	—
δ_T^{QCD} [%]	-2.65 ± 0.19	_	_

concerned, the **b-quark jet** and the least energetic light (non-b-quark) jet. The QCD corrected results are $\kappa_b \approx -0.39$ and $\kappa_i \approx 0.47$. For the b-jet the difference between the parton level result and

BACKUP: Optimizing Hadronic Spin Analyser

Optimizing hadronic spin analyzer

 $q_{opt} \equiv p(d \rightarrow q_{soft})\hat{q}_{soft} + p(d \rightarrow q_{hard})\hat{q}_{hard}$

$$\frac{1}{\Gamma_f} \frac{d\Gamma_f}{d\cos\theta_f} = \frac{1}{2} (1 + \mathbf{0.64}\cos\theta_f)$$

MAY 2024

BACKUP: Operator Dependencies

 This diagram demonstrates the overlapping dependeces that even a subset of WCs can have, thus motivating the use of a global approach to understanding any deviations to SM physics.

rescob8@uic.edu

BACKUP: Operator Definitions

$$\mathcal{O}_{Qq}^{1,1}, \mathcal{O}_{Qq}^{3,1}, \mathcal{O}_{Qq}^{1,8}, \mathcal{O}_{Qq}^{3,8}, \mathcal{O}_{Qu}^{1}, \mathcal{O}_{Qu}^{8}, \mathcal{O}_{Qu}^{1}, \mathcal{O}_{Qu}^{0}, \mathcal{O}_{Qd}^{1},$$

Definitions in Warsaw basis:

$$\begin{split} c_{Qq}^{1,1} &\equiv C_{qq}^{1(ii33)} + \frac{1}{6} C_{qq}^{1(i33i)} + \frac{1}{2} C_{qq}^{3(i33i)}, \qquad c_{tu}^{1} \equiv C_{uu}^{(ii33)} + \frac{1}{3} C_{uu}^{(i33i)} \\ c_{Qq}^{3,1} &\equiv C_{qq}^{3(ii33)} + \frac{1}{6} (C_{qq}^{1(i33i)} - C_{qq}^{3(i33i)}), \qquad c_{tu}^{8} \equiv 2 C_{uu}^{(i33i)}, \\ c_{Qq}^{1,8} &\equiv C_{qq}^{1(i33i)} + 3 C_{qq}^{3(i33i)}, \qquad c_{td}^{1} \equiv C_{ud}^{1(33ii)}, \\ c_{Qq}^{3,8} &\equiv C_{qq}^{1(i33i)} - C_{qq}^{3(i33i)}, \qquad c_{td}^{8} \equiv C_{ud}^{8(33ii)}, \end{split}$$

Technically these are degrees of freedom in WC space

[1] https://doi.org/10.48550/arXiv.1802.07237 rescob8@uic.edu

 $\mathcal{O}_{Qd}^{8}, \mathcal{O}_{tq}^{1}, \mathcal{O}_{tq}^{8}, \mathcal{O}_{tu}^{1}, \mathcal{O}_{tu}^{8}, \mathcal{O}_{td}^{1}, \mathcal{O}_{td}^{8}, and \mathcal{O}_{tG}$

‡

$$c_{tq}^{1} \equiv C_{qu}^{1(ii33)},$$

$$c_{Qu}^{1} \equiv C_{qu}^{1(33ii)},$$

$$c_{Qd}^{1} \equiv C_{qd}^{1(33ii)},$$

$$c_{Qd}^{1} \equiv C_{qd}^{1(33ii)},$$

$$c_{tq}^{8} \equiv C_{qu}^{8(ii33)},$$

$$c_{Qu}^{8} \equiv C_{qu}^{8(33ii)},$$

$$c_{Qd}^{8} \equiv C_{qd}^{8(33ii)},$$

$$\begin{aligned} O_{qq}^{1(ijkl)} &= (\bar{q}_i \gamma^{\mu} q_j) (\bar{q}_k \gamma_{\mu} q_l), \\ O_{qq}^{3(ijkl)} &= (\bar{q}_i \gamma^{\mu} \tau^I q_j) (\bar{q}_k \gamma_{\mu} \tau^I q_l) \\ O_{qu}^{1(ijkl)} &= (\bar{q}_i \gamma^{\mu} q_j) (\bar{u}_k \gamma_{\mu} u_l), \\ O_{qu}^{8(ijkl)} &= (\bar{q}_i \gamma^{\mu} T^A q_j) (\bar{u}_k \gamma_{\mu} T^A q_l) \\ O_{qd}^{1(ijkl)} &= (\bar{q}_i \gamma^{\mu} q_j) (\bar{d}_k \gamma_{\mu} d_l), \\ O_{qd}^{8(ijkl)} &= (\bar{q}_i \gamma^{\mu} u_j) (\bar{d}_k \gamma_{\mu} u_l), \\ O_{uu}^{1(ijkl)} &= (\bar{u}_i \gamma^{\mu} u_j) (\bar{d}_k \gamma_{\mu} d_l), \\ O_{ud}^{1(ijkl)} &= (\bar{u}_i \gamma^{\mu} u_j) (\bar{d}_k \gamma_{\mu} d_l), \\ O_{ud}^{8(ijkl)} &= (\bar{q}_i u_j) \varepsilon (\bar{q}_k d_l), \\ O_{quqd}^{8(ijkl)} &= (\bar{q}_i u_j) \varepsilon (\bar{q}_k d_l), \end{aligned}$$

MAY 2024

BACKUP: Kinematic Independence

R. Schöfbeck parton-level (linear) correlations: No strong feature (linear) correlation amongst the **pT**-related, Charge Asymmetry, and Spin Correlation variables.

We can see the the three sets of variables have a near zero correlation value amongst them which makes them **kinematically independent of each other**.

MAY 2024

47

BACKUP: SM EFT Global Fits

- making top quark data a powerful ingredient to incorporate in an appropriate global fit.

[1] https://doi.org/10.1007/JHEP04(2021)279 rescob8@uic.edu

• The LHC has allowed for the most precise measurements of top quark properties in history,

• EFT global fits^[1] show combining data from different sectors improves the constraints of WC's.

Marginalised WC constraints

