rescob8@uic.edu MAY 2024

DPF-PHENO 2024

by Ricardo Escobar Franco^[1], Cecilia E. Gerber^[1], Robert Schoefbeck^[2], Beren Ozek Cetinok^[1], and Titas Roy^[1]

> [1]University of Illinois, Chicago, IL, USA] [2] Institut fuer Hochenergiephysik, Vienna, Austria

Probing effective field theory operators in top quark pair events in the lepton+jets channel using charge asymmetry and angular variables

1

Overview

- Top quark physics
- Charge Asymmetry measurement
- Angular Variables

Overview

- Top quark physics
- Charge Asymmetry measurement
- Angular Variables
- Standard Model Effective Field Theory
- Correlations in Constraints
- Complimentary Observables

• Heaviest and most precisely^[1] measured of all the Standard Model (SM) quarks.

Top quark lifetime

 $\tau_{top} \approx 10^{-25}$ *s*

rescob8@uic.edu 3 MAY 2024 [1] https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/CONFNOTES/ATLAS-CONF-2023-066/

Hadronization scale Λ*QCD* ≈ 10−24*s* Spin Decorrelation scale m_t $\Lambda^2_{\mathcal{C}}$ *QCD* \leq $\frac{1}{4}$ \approx 10⁻²⁴s \leq $\frac{m_t}{12}$ \approx 10⁻²¹s

extreme mass \implies extreme instability \implies extremely short lifetime, τ_{top}

1

• Heaviest and most precisely^[1] measured of all the Standard Model (SM) quarks.

rescob8@uic.edu 3 MAY 2024 [1] https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/CONFNOTES/ATLAS-CONF-2023-066/

 $\tt{extreme}$ mass \Longrightarrow extreme instability \Longrightarrow extremely short lifetime, τ_{top}

- **Hadronization scale** ≈ 10−24*s* **Spin Decorrelation scale** m_t $\Lambda^2_{\mathcal{C}}$ *QCD* \leq $\frac{1}{4}$ \approx 10⁻²⁴s \leq $\frac{m_t}{12}$ \approx 10⁻²¹s
	-
	-

rescob8@uic.edu 4 MAY 2024

• Top quarks primarily decay into a W boson and b quark so a $t\bar{t}$ pair can decay into one of the following channels:

Top Quark Physics

Top Quark Physics

• Top quarks primarily decay into a W boson and b quark so a $t\bar{t}$ pair can decay into one of the following channels:

rescob8@uic.edu 4 MAY 2024

Top Quark Physics

• Top quarks primarily decay into a W boson and b quark so a $t\bar{t}$ pair can decay into one of the following channels:

- $\bm{\cdot}$ $t\bar{t}$ pairs are produced with a small "forward-central" charge asymmetry
	- \implies **higher order corrections enhance this asymmetry**
		- **this small charge asymmetry (AC) has been measured**

Top Quark Physics

• Top quarks primarily decay into a W boson and b quark so a $t\bar{t}$ pair can decay into one of the following channels:

- $\bm{\cdot}$ $t\bar{t}$ pairs are produced with a small "forward-central" charge asymmetry
	- \implies higher order corrections enhance this asymmetry
		- **this small charge asymmetry (AC) has been measured**
- individual top quark are produced unpolarised
	- \implies spins of top quark pairs are still strongly correlated

rescob8@uic.edu 4 MAY 2024 • **correlations observed in angular distributions of decay products**

rescob8@uic.edu 5 MAY 2024 [1] <https://doi.org/10.1016/j.physletb.2023.137703>

Charge Asymmetry^[1] ([Physics Letters B](https://doi.org/10.1016/j.physletb.2023.137703))

- Optimized for top quark pairs produced with large Lorentz boosts which have enhanced asymmetry due to valence quarks carrying larger fraction of proton's momentum
- Results corrected for detector and acceptance effects using a binned maximum likelihood fit

rescob8@uic.edu 5 MAY 2024 [1] <https://doi.org/10.1016/j.physletb.2023.137703>

Charge Asymmetry^[1] ([Physics Letters B](https://doi.org/10.1016/j.physletb.2023.137703))

- Optimized for top quark pairs produced with large Lorentz boosts which have enhanced asymmetry due to valence quarks carrying larger fraction of proton's momentum
- Results corrected for detector and acceptance effects using a binned maximum likelihood fit

$$
A_C = \frac{N(\Delta|y| > 0) - N(\Delta|y| < 0)}{N(\Delta|y| > 0) + N(\Delta|y| < 0)}
$$

- y = rapidity of the top quark (antiquark)
- $\Delta |y| = |y_t| |y_{\bar{t}}|$

rescob8@uic.edu 6 MAY 2024 [1] <https://doi.org/10.1016/j.physletb.2023.137703>

• Measurement will be at reconstruction level to maintain handle of systematic uncertainties

Charge Asymmetry^[1] ([Physics Letters B](https://doi.org/10.1016/j.physletb.2023.137703))

• Looking forward, the analysis will be improved in the following ways:

rescob8@uic.edu 6 MAY 2024 [1] <https://doi.org/10.1016/j.physletb.2023.137703>

• Measurement will be at reconstruction level to maintain handle of systematic uncertainties

Charge Asymmetry^[1] ([Physics Letters B](https://doi.org/10.1016/j.physletb.2023.137703))

• Looking forward, the analysis will be improved in the following ways:

-
- Idea is to combine precise SM measurement of:
	- **charge asymmetry**
	- **invariant mass**
	- **angular variables**
- To be input for an **EFT interpretation**

rescob8@uic.edu 7 MAY 2024

• For l+jets channel one can choose the following decay products of the top quarks:

Angular Varibables

- **lepton** for leptonically decaying top quark
- **b-quark** for hadronically decaying top quark

• For l+jets channel one can choose the following decay products of the top quarks:

rescob8@uic.edu 7 MAY 2024 [1] <https://doi.org/10.48550/arXiv.1212.4888>

Angular Varibables

• The following angular distributions[1] involve the **azimuthal angles** of the chosen decay products:

$$
\frac{d\sigma}{d(\phi - \bar{\phi})} \propto 1 + \left(\frac{\pi}{4}\right)^2 \kappa \bar{\kappa} \left[\left(\frac{C^{11} + C^{22}}{2}\right) \cos(\phi - \bar{\phi}) \right]
$$

$$
\frac{d\sigma}{d(\phi + \bar{\phi})} \propto 1 + \left(\frac{\pi}{4}\right)^2 \kappa \bar{\kappa} \left[\left(\frac{C^{11} - C^{22}}{2}\right) \cos(\phi + \bar{\phi}) \right]
$$

- **lepton** for leptonically decaying top quark
- **b-quark** for hadronically decaying top quark

SM Effective Field Theory Framework

• The SM Effective Field Theory (SMEFT) Framework parameterizes new physics (NP) in terms of higher-dimension gauge-invariant operators, \mathcal{O}_i : *i*

$$
\mathscr{L}_{EFT}=\mathscr{L}_{SM}+\sum
$$

- Λ = NP mass scale
- \mathcal{O}_i = products of SM fields that describe new interactions
- $\boldsymbol{\cdot}$ c_i = Wilson coefficients (WCs) that describe **the strength of the corresponding interaction**

SM Effective Field Theory Framework

• The SM Effective Field Theory (SMEFT) Framework parameterizes new physics (NP) in terms of higher-dimension gauge-invariant operators, \mathcal{O}_i : *i*

$$
\mathscr{L}_{EFT}=\mathscr{L}_{SM}+\sum
$$

- Λ = NP mass scale
- \mathcal{O}_i = products of SM fields that describe new interactions
- $\boldsymbol{\cdot}$ c_i = Wilson coefficients (WCs) that describe **the strength of the corresponding interaction**
- All odd-dimension operators violate lepton and/or baryon number conservation, so we don't consider them.
- **Dim-6 operators** are least supressed by NP mass scale thus we focus on those.
- Collection of operators that affect $t\bar{t}$ production:

$$
\mathcal{O}_{Qq}^{1,1}, \mathcal{O}_{Qq}^{3,1}, \mathcal{O}_{Qq}^{1,8}, \mathcal{O}_{Qq}^{3,8}, \mathcal{O}_{Qu}^{1}, \mathcal{O}_{Qu}^{8}, \mathcal{O}_{Qd}^{1}, \mathcal{O}_{dq}^{8}, \mathcal{O}_{tq}^{1}, \mathcal{O}_{tq}^{8}, \mathcal{O}_{tu}^{1}, \mathcal{O}_{td}^{8}, \mathcal{O}_{td}^{1}, \mathcal{O}_{td}^{8}, \text{ and } \mathcal{O}_{tG}^{I}
$$
\nrescoslogic.edu\nB

1,1 *Qq* , 3,1 *Qq* , 1,8 *Qq* , 3,8 *Qq* , 1 *Qu*, 8 *Qu*, 1 *Qd*,

• Correlations between effects of certain operators can conspire to avoid constraints known as

Correlations in Constraints

- Individual fits, one WC floats during fit
- Marginalised fits, multiple WC's float during fit
- "blind directions" in WC space, as seen below[1]

Correlations in Constraints

rescob8@uic.edu 9 MAY 2024 • **Different type of input data** with "orthogonal" blind direction **is complementary** in fit

horizontal axis: $c_{Qq}^{1,8} \equiv C_{qq}^{1(i33i)} + 3C_{qq}^{3(i33i)}$ $O_{qq}^{1(ijkl)} = (\bar{q}_i \gamma^{\mu} q_j)(\bar{q}_k \gamma_{\mu} q_l),$ $O_{qq}^{3(ijkl)} = (\bar{q}_i \gamma^\mu \tau^I q_j)(\bar{q}_k \gamma_\mu \tau^I q_l)$

• Correlations between effects of certain operators can conspire to avoid constraints known as

- Individual fits, one WC floats during fit
- Marginalised fits, multiple WC's float during fit
- "blind directions" in WC space, as seen below[1]

• Effects of operators on **angular** and **asymmetry** distributions, ξ_{kk} and $\Delta |\eta|$:

• Effects of operators on **angular** and **asymmetry** distributions, ξ_{kk} and $\Delta |\eta|$:

• Effects of operators on **angular** and **asymmetry** distributions, ξ_{kk} and $\Delta |\eta|$:

• Effects of operators on **angular** and **asymmetry** distributions, ξ_{kk} and $\Delta |\eta|$:

Observe **complimentary constraining power** in WC space

1.8

- **Working to optimize our charge asymmetry measurement**
	-
- **• Investigating new angular variables in our ttbar system**
- **• Will use SMEFT to interpret any observed deviations from SM predictions**
	- interpretation is based on operators that affect ttbar production
- **• Observed complimentary constraining power in different types of input data**
	- we hope to improve constraints of marginalised fits with this strategy

Summary/Outlook

• this time at reconstruction level to maintain handle on systematic uncertainties

Summary/Outlook

- **Optimization of ttbar system reconstruction** is also being investigated
	- Emphasis of getting **accurate directions** of angular variables
- Different methods to **extract constraints** for WCs are being investigated

• this time at reconstruction level to maintain handle on systematic uncertainties

- **Working to optimize our charge asymmetry measurement**
	-
- **• Investigating new angular variables in our ttbar system**
- **• Will use SMEFT to interpret any observed deviations from SM predictions**
	- interpretation is based on operators that affect ttbar production
- **• Observed complimentary constraining power in different types of input data**
	- we hope to improve constraints of marginalised fits with this strategy

Time for questions and comments

rescob8@uic.edu MAY 2024

rescob8@uic.edu 27 MAY 2024

• A top quark antiquark pair (ttbar) can be produced, at leading order (LO), by the following:

qq¯ s-channel *gg* s-channel *gg* t-channel *gg* u-channel

BACKUP: Production Mechanisms

BACKUP: Object/Event Selection

- Triggers with isolation for low p_T leptons (e and μ) but not for high p_T leptons.
- AK4 and AK8 PUPPI jets are used.
- MET is negative vector sum of p_T of all PF candidates after being scaled by PUPPI algorithm.
- The DeepJet algorithm is used for b-tagging on AK4 jets.
- The DeepAK8-MD algorithm is used for t-tagging on AK8 jets.
- >2 AK4 jets are required and at least one has to be b-tagged.

• The following 2D cut is incorporated into the event selection of high- p_T leptons to reduce the

$$
| \qquad p_{T,rel} (l,jet) > 25 \ GeV
$$

• We use a Deep Neural Network (DNN) to classify events originating from the single-top, V+jets

QCD multijet background events:

 ΔR_{min} $(l, jet) > 0.4$

backgrounds and our ttbar signals.

BACKUP: Backgrounds

Backgrounds

rescob8@uic.edu 30 MAY 2024

Event Reconstruction

• The ttbar system is reconstructed once the 4-vectors of the objects in the event selection are assigned to the leptonic or hadronic decaying top.

- The lepton and MET are always assigned to the leptonic decay.
- All the jets in event are considered in every possible permutation of jet assignments, each permutation is referred to as a candidate.

BACKUP: Event Reco

$$
\left[\frac{M_{\text{lep}} - \bar{M}_{\text{lep}}}{\sigma_{\bar{M}_{\text{lep}}}}\right]^2 + \left[\frac{M_{\text{had}} - \bar{M}_{\text{had}}}{\sigma_{\bar{M}_{\text{had}}}}\right]^2
$$
\nrescob8@uic.edu\n\nMAY 2024

BACKUP: Event Reco

Event Reconstruction

• Events are sorted into two topologies based on the absence or presence of a top-tagged AK8

jet into the resolved and merged topology, respectively.

• The best candidates is chosen by the one that minimizes a $\chi^2\left(\textit{M}_{lep}^{cand},\textit{M}_{had}^{cand}\right)$ function.

- Each event then has ~ $3^{N_{jets}}$ or ~ $2^{N_{jets}}$ candidates to consider in the resolved and merged topology.
-

BACKUP: DeepAK8 Tagger

rescob8@uic.edu 33 MAY 2024

BACKUP: DeepAK8 Tagger

Recent studies look at b-scores of AK4 jets in resolved topology and AK8 subjets in merged topology. We see the expected distribution amongst our jet collections. Currently using the UHH2 analysis framework^[1].

BACKUP: Candidate Kinematic Distributions

The distributions are shown after the likelihood normalization.

rescob8@uic.edu 35 MAY 2024

 $A_{ji}(\delta_u)\mu_i(\delta_u) + b_j(\delta_u)$ $N(\delta_u)$ \overline{a} \overline{a} $\ddot{}$ \overline{a}

BACKUP: Likelihood Function

• For each channel *k* (specific bin and category) the corresponding likelihood function is:

- P (n; μ) represents the Poisson probability of observing n events when μ are ex- pected
- *i, j* are number of bins
- A_{ji} is the response matrix, which gives the probability for an event reconstructed in bin j to have been produced in bin i
- ^μi are signal events
- bi are background events
- N(d_u) are priors for nuisance parameters

rescob8@uic.edu 36 MAY 2024

BACKUP: Chi2 Effeciency

Events 7.145 Mean Std Dev 11.85 4678 Overflow Integral 1.147e+05 $10⁴$ 10^3 $10²$ $10 \frac{1}{2}$ 20 '0 10 30 40 50 60 70 80 90 100 χ^2 (merged)

ε $\mathbb{E}_{\mathsf{X}^2 \leq 30}$ as Matchable = 22%

 $\mathbb{E}_{X^2 \le 30} = 93\%$ $\mathbb{E}_{X^2 \le 30}$ **&&** Matchable = 46%

pass matching requirements

BACKUP: B-Jets in Merged Topology

rescob8@uic.edu 38 MAY 2024

• Parameterized production spin density matrix for the ttbar system in the following manner:

• *d*Ω_{+/−} = differential solid angles of each decacy product from the top and antitop quark

[1] [https://doi.org/10.1007/JHEP12\(2015\)026](https://doi.org/10.1007/JHEP12(2015)026)

BACKUP: S.C. Framework^[1]

$$
\mathcal{R}^I = f_I[A^I \mathbf{1} \otimes \mathbf{1} + \overline{B}_i^{I+} \sigma^i \otimes \mathbf{1} + \overline{B}_i^{I-} \mathbf{1} \otimes \sigma^i + \overline{\tilde{C}}_{ij}^I \sigma^i \otimes \sigma^j]
$$

-
- d_t , $d_{\bar{t}}$ = directions of their decay products. ̂ ̂

• Angular distribution that encodes the spin structure of the ttbar system:

$$
\frac{1}{\sigma} \frac{d\sigma}{d\Omega_{+} d\Omega_{-}} = \frac{1}{(4\pi)^{2}} \left(1 + \mathbf{B}'_{1} \cdot \hat{d}_{t} + \mathbf{B}'_{2} \cdot \hat{d}_{\bar{t}} - \hat{d}_{t} \cdot C' \cdot \hat{d}_{\bar{t}} \right)
$$

rescob8@uic.edu 39 MAY 2024

BACKUP: Bernreuther

basis constructed in the rest frame of the top quark:

• The structure functions are ultimately tied back to the expectation value of the top quark and

 $C = -9\langle \xi \rangle$

$$
\mathbf{B}_1(\hat{\mathbf{a}}) = P(\hat{\mathbf{a}})\kappa_{\hat{d}_t} \quad \mathbf{B}_2(\hat{\mathbf{b}}) = -\bar{P}(\hat{\mathbf{b}})\kappa_{\hat{d}_{\bar{t}}} \quad C(\hat{\mathbf{a}}, \hat{\mathbf{b}}) = \kappa_{\hat{d}_t} \kappa_{\hat{d}_{\bar{t}}} \frac{\sigma(\uparrow \uparrow) + \sigma(\downarrow \downarrow) - \sigma(\uparrow \downarrow) - \sigma(\downarrow \uparrow)}{\sigma(\uparrow \uparrow) + \sigma(\downarrow \downarrow) + \sigma(\uparrow \downarrow) + \sigma(\downarrow \uparrow)}
$$

$$
P(\hat{\mathbf{a}}) = \langle 2\mathbf{S}_t \cdot \hat{\mathbf{a}} \rangle
$$
 $\bar{P}(\hat{\mathbf{b}}) = \langle 2\mathbf{S}_{\bar{t}} \cdot \hat{\mathbf{b}} \rangle$

• Polarization and correlation **structure functions** are decomposed in the following orthonormal

antiquark spin operators with respect to a chosen reference axes \hat{a} and b :

$$
\hat{k} = t\hat{o}p_{+\frac{2}{3}} \quad \hat{r} = \frac{1}{r}(\hat{p} - y\hat{k}), \quad \hat{n} = \frac{1}{r}(\hat{p} \times \hat{k})
$$

$$
y = \hat{k} \cdot \hat{p}, \qquad r = \sqrt{1 - y^2}
$$

BACKUP: Private EFT Samples

-
- Preliminary investigation: effect of $c^{\, 1}_{t u}$ on hadronic b quark kinematics.

rescob8@uic.edu 40 MAY 2024

• The effects of these operators is investigated using privately produced MadGraph samples.

rescob8@uic.edu 41 MAY 2024

$$
\cos\theta_+ = \hat{\ell}_+\cdot\hat{\mathbf{a}}\,,\qquad \cos\theta_-=\hat{\ell}_-
$$

BACKUP: Bernreuther Xi

Using this angular distribution we can use any set of reference axes \hat{a} and \hat{b} to project the lepton's **̂** direction onto.

For example, we can use each axes from the basis $\{\hat{n}, \hat{r}, \hat{k}\}$ and construct all combinations of the **̂ ̂ ̂** product ξ and we get:

$$
(\hat{l_+}\cdot \hat{n})(\hat{l_-}\cdot \hat{n}) \; \; (\hat{l_+}\cdot \hat{n})(\hat{l_-}\cdot \hat{r}) \; \; (\hat{l_+}\cdot \hat{n})(\hat{l_-}\cdot \hat{k}) \\ \; \xi_{ij} = (\hat{l_+}\cdot \hat{r})(\hat{l_-}\cdot \hat{n}) \; \; (\hat{l_+}\cdot \hat{r})(\hat{l_-}\cdot \hat{r}) \; \; (\hat{l_+}\cdot \hat{r})(\hat{l_-}\cdot \hat{k}) \\ (\hat{l_+}\cdot \hat{k})(\hat{l_-}\cdot \hat{n}) \; \; (\hat{l_+}\cdot \hat{k})(\hat{l_-}\cdot \hat{r}) \; \; (\hat{l_+}\cdot \hat{k})(\hat{l_-}\cdot \hat{k}) \\
$$

Bernreuther's angular distributions capture spin correlation information:

$$
\frac{1}{\sigma} \frac{d\sigma}{d\xi} = \frac{1}{2} \left(1 - C\xi \right) \ln\left(\frac{1}{|\xi|}\right) \qquad \qquad \boxed{\xi = \cos \theta_+ \cos \theta_-}
$$

These distributions of **these 9 variables capture all the spin-correlation information** contained in the decay particle's direction of flight.

rescob8@uic.edu 42 MAY 2024

Baumgart's distribution of decay angles:

Bernreuther's angular distribution for dilepton decays: $\hat{\bar{P}} \left[\begin{array}{cc} \frac{1}{\sigma} \frac{d \sigma}{d \Omega_+ d \Omega_-} = \frac{1}{(4 \pi)^2} \Big(1 + {\bf B}_1^\prime \cdot \hat{\ell}_+ + {\bf B}_2^\prime \cdot \hat{\ell}_- - \hat{\ell}_+ \cdot C^\prime \cdot \hat{\ell}_- \Big) \end{array} \right]$ $\left[\frac{1}{\sigma d} \frac{d\sigma}{d\cos\theta_+ d\cos\theta_-} = \frac{1}{4}\left(1+B_1\,\cos\theta_+ + B_2\,\cos\theta_- - C\,\cos\theta_+\cos\theta_-\right)\right]$ \sqrt{s} $\frac{1}{\sigma} \frac{d\sigma}{d\xi} = \frac{1}{2} \Big(1 - C\xi \Big) \ln \left(\frac{1}{|\xi|} \right) \qquad \xi = \cos \theta_+ \cos \theta_ \frac{1}{\sigma}\frac{d\sigma}{d\cos\theta_{\pm}} = \frac{1}{2}\Big(1+B_{1,2}\,\cos\theta_{\pm}\Big).$

BACKUP: Bernreuther vs Baumgart

$$
\frac{d^4\sigma}{d\Omega d\overline{\Omega}} \propto 1 + \kappa \vec{P} \cdot \hat{\Omega} + \bar{\kappa} \vec{P} \cdot \hat{\Omega} + \kappa \bar{\kappa} \hat{\Omega} \cdot C \cdot \hat{\overline{\Omega}}
$$

$$
\frac{d^2\sigma}{d\cos\theta d\cos\overline{\theta}} \propto 1 + \kappa P^3 \cos\theta + \bar{\kappa} \vec{P}^3 \cos\overline{\theta} + \kappa \bar{\kappa} C^{33} \cos\theta \cos\overline{\theta}
$$

$$
\frac{d\sigma}{d(\cos\theta \cdot \cos\overline{\theta})} \propto (1 + \kappa \bar{\kappa} C^{33} \cos\theta \cdot \cos\overline{\theta}) \log\left(\frac{1}{|\cos\theta \cdot \cos\overline{\theta}|}\right)
$$

$$
\frac{d\sigma}{d\cos\theta} \propto 1 + \kappa P^3 \cos\theta
$$

$$
\frac{d\sigma}{d(\phi - \bar{\phi})} \propto 1 + \left(\frac{\pi}{4}\right)^2 \kappa \bar{\kappa} \left[\left(\frac{C^{11} + C^{22}}{2}\right) \cos(\phi - \bar{\phi}) + \left(\frac{C^{21} - C^{12}}{2}\right) \sin(\phi - \phi)\right]
$$

$$
\frac{d\sigma}{d(\phi+\bar{\phi})} \propto 1 + \left(\frac{\pi}{4}\right)^2 \kappa \bar{\kappa} \left[\left(\frac{C^{11}-C^{22}}{2}\right) \cos(\phi+\bar{\phi}) + \left(\frac{C^{21}+C^{12}}{2}\right) \sin(\phi+\bar{\phi}) \right]
$$

No azimuthal analog in Bernreuther

 $\bar{\phi}$

BACKUP: Berneuther/Spin Analyser

 $\mathbf{B}_1(\hat{\mathbf{a}}) = P(\hat{\mathbf{a}})\kappa_{\hat{d}_t}$ \hat{d}_t **B**₂(**b**)</sub> = - $\bar{P}(\hat{\mathbf{b}}) \kappa_{\hat{d}_t}$

decay product can be seen below:

Table 1: Born results for spin analysing power of \overline{d} , \overline{b} , \overline{u} , least energetic light jet and thrust axis.

Table 2: QCD-corrected results for spin analysing powers.

• "In practice the most important spin analysers are, as far as non-leptonic top decays are results are κ_b ≈ –0.39 and κ_j ≈ 0.47. For the b-jet the difference between the parton level result and the jet result is small."

concerned, the **b-quark jet** and the least energetic light (non-b-quark) jet. The QCD corrected

BACKUP: Optimizing Hadronic Spin Analyser

• Optimizing hadronic spin analyzer

rescob8@uic.edu 44 MAY 2024 [1] https://indico.cern.ch/event/1233341/contributions/5528229/attachments/2723738/4732895/Dorival_top2023.pdf

 $q_{opt} \equiv p(d \rightarrow q_{soft})\hat{q}_{soft} + p(d \rightarrow q_{hard})\hat{q}_{hard}$

$$
\frac{1}{\Gamma_f} \frac{d\Gamma_f}{d\cos\theta_f} = \frac{1}{2} (1 + 0.64 \cos\theta_f)
$$

rescob8@uic.edu 45 MAY 2024

BACKUP: Operator Dependencies

• This diagram demonstrates the overlapping dependeces that even a subset of WCs can have, thus motivating the use of a global approach to understanding any deviations to SM physics.

BACKUP: Operator Definitions

rescob8@uic.edu 46 MAY 2024 [1]<https://doi.org/10.48550/arXiv.1802.07237>

• Definitions in Warsaw basis:

$$
\begin{aligned} c_{Qq}^{1,1} &\equiv C_{qq}^{1(ii33)} + \frac{1}{6} C_{qq}^{1(i33i)} + \frac{1}{2} C_{qq}^{3(i33i)}, & c_{tu}^{1} &\equiv C_{uu}^{(ii33)} + \frac{1}{3} C_{uu}^{(i33i)}, & c_{Qu}^{1} &\equiv C_{qu}^{1(i33i)}, \\ c_{Qq}^{3,1} &\equiv C_{qq}^{3(ii33)} + \frac{1}{6} (C_{qq}^{1(i33i)} - C_{qq}^{3(i33i)}), & c_{tu}^{8} &\equiv 2 C_{uu}^{(i33i)}, & c_{Qu}^{1} &\equiv C_{qd}^{1(33ii)}, \\ c_{Qq}^{1,8} &\equiv C_{qq}^{1(i33i)} + 3 C_{qq}^{3(i33i)}, & c_{td}^{1} &\equiv C_{ud}^{1(33ii)}, & c_{tq}^{8} &\equiv C_{qu}^{8(ii33)}, \\ c_{Qq}^{3,8} &\equiv C_{qq}^{1(i33i)} - C_{qq}^{3(i33i)}, & c_{td}^{8} &\equiv C_{ud}^{8(33ii)}, & c_{Qu}^{8} &\equiv C_{qu}^{8(33ii)}, \\ c_{Qq}^{3,8} &\equiv C_{qq}^{1(i33i)} - C_{qq}^{3(i33i)}, & c_{td}^{8} &\equiv C_{ud}^{8(33ii)}, & c_{Qu}^{8} &\equiv C_{qd}^{8(33ii)}, \\ c_{Qq}^{8} &\equiv C_{qd}^{8(33ii)}, & c_{Qd}^{8} &\equiv C_{qd}^{8(33ii)}, \\ \end{aligned}
$$

8 *Qd*, 1 *tq*, 8 *tq*, 1 *tu*, 8 *tu*, 1 *td*, 8 \int_{td}^{δ} *and* σ_{tG}

$$
O_{qq}^{1(ijkl)} = (\bar{q}_i \gamma^\mu q_j)(\bar{q}_k \gamma_\mu q_l),
$$

\n
$$
O_{qq}^{3(ijkl)} = (\bar{q}_i \gamma^\mu \tau^I q_j)(\bar{q}_k \gamma_\mu \tau^I q_j)
$$

\n
$$
O_{qu}^{1(ijkl)} = (\bar{q}_i \gamma^\mu q_j)(\bar{u}_k \gamma_\mu u_l),
$$

\n
$$
O_{qu}^{8(ijkl)} = (\bar{q}_i \gamma^\mu T^A q_j)(\bar{u}_k \gamma_\mu T^I
$$

\n
$$
O_{qd}^{1(ijkl)} = (\bar{q}_i \gamma^\mu q_j)(\bar{d}_k \gamma_\mu d_l),
$$

\n
$$
O_{qd}^{8(ijkl)} = (\bar{q}_i \gamma^\mu T^A q_j)(\bar{d}_k \gamma_\mu T^I
$$

\n
$$
O_{uu}^{(ijkl)} = (\bar{u}_i \gamma^\mu u_j)(\bar{u}_k \gamma_\mu u_l),
$$

\n
$$
O_{ud}^{1(ijkl)} = (\bar{u}_i \gamma^\mu u_j)(\bar{d}_k \gamma_\mu d_l),
$$

\n
$$
O_{ud}^{8(ijkl)} = (\bar{u}_i \gamma^\mu T^A u_j)(\bar{d}_k \gamma_\mu T^I)
$$

\n
$$
{}^{i}O_{quqd}^{1(ijkl)} = (\bar{q}_i u_j) \varepsilon (\bar{q}_k d_l),
$$

\n
$$
{}^{i}O_{quqd}^{8(ijkl)} = (\bar{q}_i T^A u_j) \varepsilon (\bar{q}_k T^A d_l)
$$

$$
\mathcal{O}_{Qq}^{1,1}, \mathcal{O}_{Qq}^{3,1}, \mathcal{O}_{Qq}^{1,8}, \mathcal{O}_{Qq}^{3,8}, \mathcal{O}_{Qu}^{1}, \mathcal{O}_{Qu}^{8}, \mathcal{O}_{Qd}^{1},
$$

• Technically these are degrees of freedom in WC space

BACKUP: Kinematic Independence

We can see the the three sets of variables have a near zero correlation value amongst them which makes them **kinematically independent of each other**.

R. Schöfbeck parton-level (linear) correlations: No strong feature (linear) correlation amongst the **pT**-related, **C**harge **A**symmetry, and **S**pin **C**orrelation variables.

• The LHC has allowed for the most precise measurements of top quark properties in history,

• EFT global fits^{[\[1\]](https://doi.org/10.1007/JHEP04(2021)279)} show combining data from different sectors improves the constraints of WC's.

- making top quark data a powerful ingredient to incorporate in an appropriate global fit.
-

rescob8@uic.edu 48 MAY 2024 [1] https://doi.org/10.1007/JHEP04(2021)279

BACKUP: SM EFT Global Fits