

New Physics Results from the FASER Experiment

Ansh Desai University of Oregon on behalf of the FASER Collaboration

DPF Conference May 13th, 2024

What is FASER?

- The Forward Search Experiment is an experiment at the LHC primarily designed to search for light, weakly interacting long lived particles produced at the ATLAS interaction point.
 - Neutrinos, Dark Photon
- Large signal from high LHC collision rate and forward peaked meson production
- Located 480 downstream of the ATLAS interaction point, 100m of rock and LHC magnets between the detector and ATLAS
- Small experiment -> Fast turnaround!
 - Built 2019-2021
 - First result from data in 2022
 - Data collecting is still ongoing

The FASER Detector

- - 10cm radius of active volume
 - 7m long

Front Scintillator

The Dark Photon

- Dark photons (A') are a common wellmotivated feature of hidden sector models (dark U(1))
- They would potentially be weakly coupled to SM via a kinetic mixing (ε) with a SM Photon
- MeV scale dark photons would be produced mainly in light meson decays at the LHC
- FASER targets small ε highly boosted MeVscale massive dark photons (decays most likely to e⁺ e⁻)

- Observed as A' → e⁺ e⁻ appearing from nothing with ~TeV energy
- Must decay in 1.5m decay volume

Event Selection:

Signal

- In time with LHC Collision
- No signal in veto scintillators
- Something in downstream scintillators
- Two opposite sign tracks within fiducial volume (r < 95mm)

5

• Calorimeter energy > 500 GeV

Dark Photon Results

- No events observed in 27 fb⁻¹ from 2022
- $(2.3 \pm 2.3) * 10^{-3}$ background events expected

Dark Photon

Ansh Desai

Axion-Like-Particles (ALPs)

- FASER can also probe several types of ALPs models!
 - Especially sensitive to scenarios in which the ALP couples to the $\rm SU(2)_L$ gauge bosons
- The ALPs in our sensitivity range are dominantly produced by B^0 , B^{\pm} meson decays
- Once produced, the ALP decays into two high energy photons
 - These cannot be distinguished in our calorimeter
- Signal: Two photons appearing from "nothing" with ~TeV of EM energy
- Can decay anywhere in FASER spectrometer volume

ALPs Analysis

Requirements

- No signal in any of the 5 veto scintillators
- No signal in the timing scintillator
- Evidence of EM Shower in preshower detector
- Significant energy deposit in electromagnetic calorimeter

Backgrounds

- Neutral hadrons
- Large-angle muons
- Cosmic events
- Neutrinos
- The main background in this analysis arises from non-negligible charge—current neutrino interactions

Selection	Efficiency	Cum. Efficiency			
$m_a = 140 \text{ MeV}, \ g_{aWW} = 2 \times 10^{-4} \text{ GeV}^{-1}$					
Veto Signal nMIP < 0.5	99.6%	99.6%			
Timing Scintillator Signal nMIP < 0.5	97.8%	97.4%			
Preshower Ratio > 4.5	85.7%	83.5%			
Second Preshower nMIP > 10	98.6%	82.3%			
Calo $E > 1.5$ TeV	91.6%	75.4%			

Uncertainties

- 3 primary sources of systematic uncertainty on the expected signal in this analysis + statistical uncertainty
- Modeling of flux of SM particles from LHC <- Dominant source (60%)
- Detector response to simulation Calorimeter, Preshower layers
- Luminosity uncertainty: from ATLAS

Signal Sample	Flux	Stat.	Luminosity	Calorimeter	Second Preshower Layer	Preshower Ratio
$m_a = 140 \text{ MeV}$	59.4%	1.8%	2.2%	3.6%	0.6%	7.0%
$g_{aWW} = 2 \times 10^{-4} \text{ GeV}^{-1}$					0.070	1.370
$m_a = 120 \text{ MeV}$	57 3%	3 5%	2.9%	16.3%	0.6%	6.0%
$g_{aWW} = 10^{-4} \text{ GeV}^{-1}$	57.570	3.570	2.270	10.370	0.070	0.970
$m_a = 300 { m ~MeV}$	58.0%	2 0%	2.0%	15.8%	0.6%	8 10%
$g_{aWW} = 2 \times 10^{-5} \text{ GeV}^{-1}$	56.070	2.970		10.070	0.070	0.470

Background Estimation: Neutrinos

- Neutrinos produced upstream of FASER through light/charm hadron decays – charged/neutral current interactions in FASER
- Evades veto, but interacts near/in preshower/calorimeter
 → mimics signal
- Background evaluated with MC Simulations and validated in different detector regions
- Validation regions are defined via two preshower cuts

For 57.7 fb⁻¹

> 1.5 TeV signal region			
Light	$0.23^{+0.01}_{-0.11}$ (flux) \pm 0.11 (exp.) \pm 0.04 (stat.)		
Charm	$0.19^{+0.32}_{-0.09}~{ m (flux)}\pm 0.06~{ m (exp.)}\pm 0.03~{ m (stat.)}$		
Total	$0.42 \pm 0.38 \; (90.6\%)$		

Validation Region: Magnet Region

- These regions were validated by looking at neutrino interaction vertices and ALPS decay vertices using MC samples
- To check if estimates were reasonable, we compared MC simulations to data and found good agreement

Magnet	
MC	43.5 ± 18.2 (41.9%)
Data	34

Background Estimate Validation

- Distribution of neutrino interaction vertices and decay vertex of representative ALP signal model with $m_a = 120$ MeV and $g_{aWW} = 10^{-4}$ GeV⁻¹
- Magnet and calorimeter regions have high efficiency (80%) and purity (>90%) for neutrino events
- Preshower Region's efficiency is < 40%

Good agreement between neutrino MC prediction and data in validation regions

Calorimeter		Magnet		Preshower	
MC	62.7 ± 19.7 (31.4%)	MC	43.5 ± 18.2 (41.9%)	MC	17.8 ± 5.1 (28.8%)
Data	74	Data	34	Data	15

Unblinded Results

- In 57.7 fb⁻¹ of data we saw 1 event in unblinded signal region
- Expected background: 0.42 ± 0.38 events
- Preshower deposits consistent with EM Shower
- Calorimeter energy of **1.6 TeV**

Conf note: CERN-FASER-CONF-2024-001

Observed Limit

Summary

- FASER explored new regions in the dark photon parameter space <u>PLB 848 (2024)</u> <u>138378</u>
- FASER has probed new ALPs parameter space at mass and coupling previously unexplored by previous experiments
- A conference note on the ALPS analysis has been <u>published</u>, and a paper is forthcoming
- FASER expects to collect much more data in Run 3 and 4 allowing for more powerful searches for dark photons, ALPs, and other new physics models
- Thank you for listening!

The FASER Collaboration

96 collaborators, 26 institutions, 10 countries

Backup

Luminosity

• The ALPs analysis used 57.7 fb⁻¹ of data from 2022-2023 (LHC Run 3)

Event Display

- This event had reconstructed energy equivalent to 1.6 TeV
- Preshower signal consistent with EM Shower

Control Regions 1 TeV Plots

Control Region Plots

Ansh Desai

Trigger and Data Quality

Selecting events with calorimeter triggers

Calorimeter timing (> -5 ns and < 10 ns)

Baseline Selection

Veto/VetoNu Scintillator to have no signal (< 0.5 MIPs)

Timing Scintillator to have no signal (< 0.5 MIPs)

Signal Region

Preshower Ratio to have EM shower in the Preshower (> 4.5)

Second Preshower Layer to have signal (> 10 MIPs)

Calorimeter to have a large deposit (> 1.5 TeV)

Background Estimation: Other

- Veto Inefficiency: measured per layer efficiency of below 10⁻⁵, with estimated # of muons ~10⁸ → negligible
- Large angle muons: Checked with MC \rightarrow negligible
- Neutral hadron background: suppressed by muon angle and high calorimeter energy. Previously found to be negligible in dark photon analysis, and for the same reasons as found then → negligible
- Non collision background: no events above 100 GeV observed when running over the same amount of time as 2022 + 2023 data → negligible
- Beam Gas Background (LHC Beam 1) -> Events caused by this are well separated from collisions -> timing cut eliminates these → negligible

Alternate Limits Plot

Preliminary L = 57.7 fb⁻¹

Ansh Desai