# w = -1.73 Solves the Hubble Tension But Destroys the Universe

David S. Lindsay

## Background

- Present universe expansion rate H<sub>0</sub> Thought to be 73 (km/sec)/Mpc But JWST reports 69.4
- Current theory: ACDM yields 68
- Serious discrepancy
- Many proposals for resolution
- w < -1 investigated in this presentation (wCDM)
- Units: c = G = 1

### **Thermodynamics** Review

- Perfect fluid equation of state  $p = w \rho_E$
- Conservation of energy yields  $\rho \propto 1/V^{(w+1)}$
- Examples
  - Pure radiation:  $w = \frac{1}{3}$ ,  $\rho \propto 1/V^{4/3}$
  - Pressureless dust:  $w = 0, \rho \propto 1/V$
  - Cosmological constant A: w = -1,  $\rho = const$
  - ?: w < -1,  $\rho$  grows with V (How is this possible?)
- Perfect fluid with most negative w eventually dominates as universe expands

## **ACDM Model**

#### Assumptions

- Age of the universe =  $13.8 \text{ Gyr} (13.8 \times 10^9 \text{ yr})$
- Universe is spatially flat



4/29/2024

# $H_0$ with w $\neq$ -1



# **Calculated Expansion**

Dotted: w = -1Solid: w = -1.73



## **Future Expansion**



#### Late Universe

**Expanding Single Perfect Fluid Models** 

- Most negative w fluid dominates
- a(t) ∝ t<sup>2/3(w+1)</sup>
  - w > -1/3: Expansion decelerates
  - w = -1/3: Expansion linear in t
  - w < -1/3: Expansion accelerates
- w = -1: Expansion exponential in t
- w < -1: Expansion diverges at finite t = t<sub>RIP</sub>
  - $a(t) \propto (t_{RIP} t)^{2/3(w+1)}$
  - w = -1-x, x>0:  $a(t) \propto 1/(t_{RIP} t)^{2/3x}$

## Just Before the End w = -1.73

#### <u>Event</u>

Unbind Clouds of Magellan Tear solar system from galaxy Tear earth out of orbit Tear apart earth Dark Pressure = -1 atmosphere Dark energy = density of water Rips apart neutron star

#### Time to Big Rip

180 million yrs
12 million yrs
6 days
18 minutes
16 minutes
47 msec
50 μsec



- Dark energy A with w at t = 0
- a(t) is scale factor

Metric, order is  $(t, r, \theta, \phi)$ :

$$g_{\mu \, 
u} = \left( egin{array}{cccc} -1 & 0 & 0 & 0 \ 0 & a(t)^2 & 0 & 0 \ 0 & 0 & r^2 a(t)^2 & 0 \ 0 & 0 & 0 & r^2 a(t)^2 \sin^2( heta) \end{array} 
ight)$$

Einstein equation:



