Cherenkov Light Identification at Coherent CAPTAIN-Mills Experiment 10 ton liquid Argon light collection detector studying neutrino and beyond Standard Model physics at Los Alamos National Lab

DPF-Pheno 2024 14 May 2024

Darcy Newmark on behalf of the CCM Collaboration

dnewmark@mit.edu

Outline

- 1. CCM Experiment
- 2. Cherenkov Light Identification
- 3. Physics Program

CCM Experiment

Introduction to CCM Neutrino production • Detector design

Timeline

CCM120 Engineering Run

- Prototype detector
- Testing 120 PMTs for SBND
- Produced physics results

CCM200 Engineering Run • Upgraded detector to 200 8" PMTs • Doubled veto PMT coverage Increased forward shielding

CCM Experiment

Recently completed first year of data collection!

CCM200 Physics Run (2023-2025)

- Improved DAQ
- Installed additional top-shielding
- Pursing higher energy calibration

Neutrino production at LANSCE

- 800 MeV pulsed proton beam (20 Hz, 100 μAmp current, and 290 nsec beam spill) incident on tungsten target
- Prolific source of neutrinos from π^+ DAR (flux of $5.28 \cdot 10^5 \nu$ /cm²/s at 23m from target)
- Above ground facility —> short beam spill window is necessary to reduce backgrounds from comic rays

CCM Experiment

CCM at Lujan

- Detector positioned 90° off axis from the proton beam and 23m from tungsten target
- 7 ton fiducial LAr volume, 50% photocoverage from 200 8" PMTs
- 3 ton optically isolated active veto region surrounding fiducial volume with 40 1" PMTs
- The Lujan facility will receive $2.25 \cdot 10^{22}$ POT in the ongoing 3 year run cycle

CCM Experiment

CCM200 Detector

- 80% of PMTs coated in 1,1,4,4-Tetraphenyl-1,3-butadiene (TPB) to wavelength shift LAr scintillation light
- TPB foils on walls of the detector
- Fast timing **2nsec** resolution from digitizers
- Energy detection range from ~100 keV to ~2 GeV

CCM Experiment

Light Production in Liquid Argon

Quality	Scintillation Light	
Intensity (for a MIP)	~40,000 photons/MeV	(v
Direction	Isotropic	
Timing	Fast component (nsec) and slow component (usec) <u>measured by DEAP collaboration</u>	
Photon Wavelength	Spectrum peaks at 128 nm	

CCM Experiment

Light Collection in CCM

- UV scintillation light can be directly detected by only coated PMTs
- Broad spectrum Cherenkov light can be directly detected by coated AND **uncoated PMTs**
- Wavelength shifted light from TPB reemission can be detected by all PMTs
- Use 2nsec timing resolution to isolate early direct Cherenkov light hits in uncoated PMTs

CCM Experiment

Cherenkov Light Identification

Motivations
Data driven approach

Cherenkov Light for Particle Discrimination

- At the most basic level Cherenkov light identification isolates neutral from charged particles
- Combining scintillation detectors which have low energy thresholds and good energy resolution — with Cherenkov light detection for PID enables a broad physics program and powerful background rejection

Cherenkov Light Identification

Experimental Efforts

- 1. Reduce scintillation light
 - Lightly dope liquid scintillator most straightforward experimental technique
 - "Tuning" scintillation light yield to Cherenkov light yield
 - Drawback reduces energy resolution and increases energy threshold
 - Example : LSND

Cherenkov Light Identification

- 2. Smarter light collection
 - Exploit differences in time spectrum though slower scintillator
 - Exploit differences in wavelength spectrum though light collection mechanism
 - Drawback experimentally difficult
 - Examples : CCM, nuDOT, Borexino, THEIA

Our Approach

- Need a well known, bright source of Cherenkov light for developing identification procedure
- Cosmic ray muons that decay at rest produce Michel electrons with well known energy spectrum and energies up to ~50 MeV electrons
- Select cosmic muons entering CCM with a dedicated cosmic muon trigger using CosmicWatch Detectors

Cherenkov Light Identification

CosmicWatch

- Developed by Spencer Axani while graduate student at MIT
- Table top muon counters using plastic scintillator optically coupled to a SiPM
- Trigger on coincidence signal from pair of cosmic watch detectors located on top of CCM

Cherenkov Light Identification

http://www.cosmicwatch.lns.mit.edu/

Example Cosmic Muon Decay

- Plot showing photoelectrons summed across all PMTs as a function of time for one cosmic trigger
- Muon deposits energy around trigger at t = 0 nsec
- About 4μ sec later, additional energy deposit from Michel electron
- Dedicated cosmic trigger has rate of around 0.41 Hz

Cherenkov Light Identification

Simulation of 5 MeV Electron in CCM

★ Direct Scintillation Hits Only

(No Cherenkov Light)

Cherenkov Light Identification

Time Structure from Simulation

- Injected 5 MeV electron at the origin of detector
- Plot showing photoelectrons summed across all PMTs as a function of time
- Cherenkov light is earlier and dimmer than scintillation light
- About 8 nsec after event start, TPB WLS light re-emissions become significant
- Need excellent reconstruction of time structure to isolate Cherenkov light

Cherenkov Light Identification

- Using cosmic triggers, we can look at data
- Muon enters detector, deposits scintillation light

Cherenkov Light Identification

- Using cosmic triggers, we can look at data
- Muon enters detector, deposits scintillation light
- Stopped muon decays, emitting Michel electron about 3 μ sec later

Cherenkov Light Identification

- Using cosmic triggers, we can look at data
- Muon enters detector, deposits scintillation light
- Stopped muon decays, emitting Michel electron about 3 μ sec later
- Zoom in on first 8 nsec of Michel electron waveform

Cherenkov Light Identification

- Using cosmic triggers, we can look at data
- Muon enters detector, deposits scintillation light
- Stopped muon decays, emitting Michel electron about 3 μ sec later
- Zoom in on first 8 nsec of Michel electron waveform — plotting spatial distribution of charge

Cherenkov Light Identification

- Uncoated PMTs are efficient at picking up initial direct Cherenkov photons in the visible spectrum
- Promising first demonstration of event by event identification of Cherenkov light in liquid argon
- Will provide an important reference point for developing Cherenkov light based particle discrimination

Cherenkov Light Identification

Ongoing Work

- Vertex reconstruction algorithm that leverages timing information
 - Fitting for LAr scintillation light profile
 - Derive template for scintillation light
- Simulation of Cherenkov rings
 - Using Geant4 based simulation
 - Derive template for Cherenkov light

Cherenkov Light Identification

liaht

LAr Light Profile — Long Time Scale

- Using ²²Na calibration source, accumulate many events from β^+ decay
- Fit for long time constant decay from 1 - 3 μ s from event start
- Measure long scale time constant $\tau \sim 743$ nsec (preliminary)

Cherenkov Light Identification

LAr Light Profile — Short Time Scale

- For the prompt component, we model geometric effects analytically
- Fit for prompt decay constant and ratio of singlet to triplet light to early portion of the waveform
- Measure short scale time constant $\tau \sim 9$ nsec (preliminary)

Cherenkov Light Identification

Physics Program

Cherenkov light for background reduction
Published physics searches

Final State Signals	Electron/Photon	Nuclear Recoil
Energy Range	~1 - 15 MeV	~100 keV
Scintillation Light	Yes	Yes
Cherenkov Light	Yes	No
Primary background	Neutron scatters	Low energy beta decays (³⁹ Ar)
Background signal	Scintillation light only	Scintillation and cherenkov light

Physics Program

Physics Results Summary Plots ALPs and QCD Axion

Physics Program

Light Dark Matter

Dark Sector Coupling to Meson Decay

Conclusion

Summary

- new models/parameter space in the dark sector
- combination of coated and uncoated PMTs
- Event by event identification of Cherenkov light program is ongoing

CCM200 has completed the first of a three year run cycle and will probe many

Cherenkov light separation in CCM is possible because of precision timing and

30

Thank you for listening!

LABORATORY DIRECTED **RESEARCH & DEVELOPMENT**

Massachusetts Institute of Technology

Backgrounds

- 90 degrees off axis —> no DIF contamination
- Primary backgrounds are fast neutrons

• Shielding attenuates neutrons, active veto allows us to tag neutrons entering our detector

23 meters

Backgrounds

- Precise timing using measured gamma flash allows us to isolate speed of light particles
- pre-beam region of data collection

- or light dark matter produced in charged meson decays
- decays at CCM

- 10.1103/PhysRevD.107.095036

Leptophobic DM

- Leptophobic dark matter [https://doi.org/10.1103/ PhysRevLett.129.021801]
- Explore ~10 MeV mediator masses
- Scalar DM χ produced from π^0 decay in target
- Detected through coherent interaction in CCM (low \bullet energy nuclear recoil)
- Results from CCM120 engineering run in blue, CCM200 expected results in dashed red

Heavy Neutral Leptons

- Heavy neutral leptons
- Using dipole portal transition model [https://doi.org/10.1103/ PhysRevD.107.055009]
- Considering HNL production from upscattering in shielding and detector materials
- Detection from ~10 MeV photon

