Darcy Newmark *on behalf of the CCM Collaboration*

Cherenkov Light Identification at Coherent CAPTAIN-Mills Experiment 10 ton liquid Argon light collection detector studying neutrino and beyond Standard

Model physics at Los Alamos National Lab

DPF-Pheno 2024 14 May 2024

dnewmark@mit.edu

Outline

- 1. CCM Experiment
- 2. Cherenkov Light Identification
- 3. Physics Program

CCM Experiment

• Introduction to CCM • Neutrino production • Detector design

Timeline

CCM120 Engineering Run

CCM200 Engineering Run • Upgraded detector to 200 8" PMTs • Doubled veto PMT coverage • Increased forward shielding

- Prototype detector
- Testing 120 PMTs for SBND
- Produced physics results

-
-
-

CCM200 Physics Run (2023-2025)

- Improved DAQ
- Installed additional top-shielding
- Pursing higher energy calibration

D.A. Newmark | 4

Recently completed first year of data collection!

CCM Experiment

Neutrino production at LANSCE

- **800 MeV pulsed proton beam** (20 Hz, 100 μ Amp current, and 290 nsec beam spill) incident on **tungsten target**
- Prolific source of neutrinos from π^+ DAR (flux of $5.28 \cdot 10^5 \nu$ /cm²/s at 23m from target)
- Above ground facility \rightarrow short beam spill window is necessary to reduce backgrounds from comic rays

CCM Experiment

- Detector positioned 90° off axis from the proton beam and **23m** from tungsten target
- **7 ton fiducial LAr volume, 50% photocoverage from 200 8" PMTs**
- **3 ton optically isolated active veto region** surrounding fiducial volume with 40 1" PMTs
- The Lujan facility will receive $2.25 \cdot 10^{22}$ POT in the ongoing 3 year run cycle

CCM at Lujan

CCM Experiment

- 80% of PMTs coated in 1,1,4,4- Tetraphenyl-1,3-butadiene (TPB) to **wavelength shift LAr scintillation light**
- TPB foils on walls of the detector
- Fast timing **2nsec** resolution from digitizers
- Energy detection range from $~100$ keV to $~2$ GeV

CCM200 Detector

CCM Experiment

D. A. Newmark | 8

Light Production in Liquid Argon

CCM Experiment

Light Collection in CCM

- UV scintillation light can be directly detected by **only coated PMTs**
- Broad spectrum Cherenkov light can be directly detected by **coated AND uncoated PMTs**
- Wavelength shifted light from TPB reemission can be detected by all PMTs
- Use 2nsec timing resolution to isolate early direct Cherenkov light hits in uncoated PMTs

CCM Experiment

Cherenkov Light Identification

• Motivations • Data driven approach

Cherenkov Light for Particle Discrimination

- At the most basic level Cherenkov light identification isolates **neutral from charged particles**
- Combining scintillation detectors which have low energy thresholds and good energy resolution — with Cherenkov light detection for PID enables a broad physics program and powerful background rejection

Cherenkov Light Identification **11** D.A. Newmark 1 11

Experimental Efforts

- 2. Smarter light collection
	- Exploit differences in time spectrum though slower scintillator
	- Exploit differences in wavelength spectrum though light collection mechanism
	- Drawback experimentally difficult
	- Examples : CCM, nuDOT, Borexino, THEIA

D. A. Newmark

- 1. Reduce scintillation light
	- Lightly dope liquid scintillator most straightforward experimental technique
	- "Tuning" scintillation light yield to Cherenkov light yield
	- Drawback reduces energy resolution and increases energy threshold
	- Example : LSND

Cherenkov Light Identification **12** D.A. Newmark | 12

Our Approach

- Need a well known, bright source of Cherenkov light for developing identification procedure
- Cosmic ray muons that decay at rest produce Michel electrons with well known energy spectrum and energies up to ~50 MeV electrons
- Select cosmic muons entering CCM with a **dedicated cosmic muon trigger using CosmicWatch Detectors**

D. A. Newmark

Cherenkov Light Identification

CosmicWatch

- Developed by Spencer Axani while graduate student at MIT
- Table top muon counters using plastic scintillator optically coupled to a SiPM
- Trigger on coincidence signal from pair of cosmic watch detectors located on top of CCM

Cherenkov Light Identification **14** D.A. Newmark 1 14

http://www.cosmicwatch.lns.mit.edu/

- Plot showing photoelectrons summed across all PMTs as a function of time for one cosmic trigger
- Muon deposits energy around trigger at $t = 0$ nsec
- About 4 μ sec later, additional energy deposit from Michel electron
- Dedicated cosmic trigger has rate of around 0.41 Hz

Example Cosmic Muon Decay

Cherenkov Light Identification

Simulation of 5 MeV Electron in CCM

(No Cherenkov Light)

★ Direct Scintillation Hits Only

Cherenkov Light Identification

Time Structure from Simulation

- Injected 5 MeV electron at the origin of detector
- Plot showing photoelectrons summed across all PMTs as a function of time
- Cherenkov light is earlier and dimmer than scintillation light
- About 8 nsec after event start, TPB WLS light re-emissions become significant
- **• Need excellent reconstruction of time structure to isolate Cherenkov light**

Cherenkov Light Identification **17** D.A. Newmark 1 17

- Using cosmic triggers, we can look at data
- Muon enters detector, deposits scintillation light

Cherenkov Light Identification

- Using cosmic triggers, we can look at data
- Muon enters detector, deposits scintillation light
- Stopped muon decays, emitting Michel electron about 3 *μ*sec later

Cherenkov Light Identification

20

- Using cosmic triggers, we can look at data
- Muon enters detector, deposits scintillation light
- Stopped muon decays, emitting Michel electron about 3 µsec later
- Zoom in on first 8 nsec of Michel electron waveform

Cherenkov Light Identification

- Using cosmic triggers, we can look at data
- Muon enters detector, deposits scintillation light
- Stopped muon decays, emitting Michel electron about 3 µsec later
- Zoom in on first 8 nsec of Michel electron waveform — plotting spatial distribution of charge

Cherenkov Light Identification

- Uncoated PMTs are efficient at picking up initial direct Cherenkov photons in the visible spectrum
- Promising first demonstration of event by event identification of Cherenkov light in liquid argon
- Will provide an important reference point for developing **Cherenkov light based particle discrimination**

D. A. Newmark

Cherenkov Light Identification

Ongoing Work

- Vertex reconstruction algorithm that leverages timing information
	- Fitting for LAr scintillation light profile
	- Derive template for scintillation light \bigcirc
- Simulation of Cherenkov rings
	- Using Geant4 based simulation
	- Derive template for Cherenkov light

Cherenkov Light Identification **Cherenkov Light Identification 23**

LAr Light Profile — Long Time Scale

- Using 22Na calibration source, accumulate many events from β^+ decay *β*+
- Fit for long time constant decay from 1 - 3 μ s from event start
- Measure long scale time $constant \tau \sim 743$ nsec *(preliminary)*

D. A. Newmark

Cherenkov Light Identification

LAr Light Profile — Short Time Scale

- For the prompt component, we model geometric effects analytically
- Fit for prompt decay constant and ratio of singlet to triplet light to early portion of the waveform
- Measure short scale time constant *τ* ~ 9 nsec *(preliminary)*

D. A. Newmark

Cherenkov Light Identification

Physics Program

• Cherenkov light for background reduction • Published physics searches

Physics Program

D.A. Newmark | 27

Physics Results Summary Plots ALPs and QCD Axion

Physics Program D. A. Newmark | 28

Conclusion

Summary

- new models/parameter space in the dark sector
- combination of coated and uncoated PMTs
- Event by event identification of Cherenkov light program is ongoing

• CCM200 has completed the first of a three year run cycle and will probe many

• Cherenkov light separation in CCM is possible because of precision timing and

IN THE CITY OF NEW YORK

Backgrounds

32

23 meters

D. A. Newmark

- 90 degrees off axis \rightarrow no DIF contamination
- Primary backgrounds are fast neutrons
-

• Shielding attenuates neutrons, active veto allows us to tag neutrons entering our detector

Backgrounds

- Precise timing using measured gamma flash allows us to isolate speed of light particles
- pre-beam region of data collection

-
-
- or light dark matter produced in charged meson decays
- decays at CCM

D.A. Newmark | 34

- [10.1103/PhysRevD.107.095036\]](https://doi.org/10.1103/PhysRevD.107.095036)
-

D.A. Newmark | 35

- [Leptophobic dark matter](https://doi.org/10.1103/PhysRevLett.129.021801) [[https://doi.org/10.1103/](https://doi.org/10.1103/PhysRevLett.129.021801) [PhysRevLett.129.021801](https://doi.org/10.1103/PhysRevLett.129.021801)]
- Explore ~10 MeV mediator masses
- Scalar DM χ produced from π^0 decay in target
- Detected through coherent interaction in CCM (low energy nuclear recoil)
- Results from CCM120 engineering run in blue, CCM200 expected results in dashed red

D.A. Newmark | 36

Leptophobic DM

- Heavy neutral leptons
- Using dipole portal transition model [\[https://doi.org/10.1103/](https://doi.org/10.1103/PhysRevD.107.055009) [PhysRevD.107.055009\]](https://doi.org/10.1103/PhysRevD.107.055009)
- Considering HNL production from upscattering in shielding and detector materials
- Detection from ~10 MeV photon

D. A. Newmark | 37

Heavy Neutral Leptons