A Global Fit of Non-Relativistic Effective Dark Matter Operators Including Solar Neutrinos

Neal Avis Kozar

Aaron Vincent

Work with Aaron Vincent, Pat Scott, and help from the GAMBIT collaboration

MAY 13, 2024

PHENO

Introduction to Non-Relativistic Effective Operators

(NREOs)

Search Types

- Indirect detection, direct detection, collider searches
- Each are independent detection methods
- Solar neutrinos act as a compliment to direct detection

Hermitian Operators

- The general case of a dark matter scattering interaction is considered
- The Hermitian operators that govern the interaction are

$$\mathbbm{1}_{\chi N}$$
 , $i \mathbf{\hat{q}}$, $\mathbf{\hat{v}}^{\perp}$, $\mathbf{\hat{S}}_{\chi}$, $\mathbf{\hat{S}}_{N}$

 $\hat{\mathbf{v}}^{\perp} = \hat{\mathbf{v}} + \hat{\mathbf{q}}/(2\mu_N)$

Non-Relativistic Effective Operators

- Spin-independent: $\hat{\mathcal{O}}_1 = \mathbb{1}_{\chi N}$
- Spin-dependent: $\hat{\mathcal{O}}_4 = \hat{\mathbf{S}}_\chi \cdot \hat{\mathbf{S}}_N$
- Novel interactions, such as

$$\hat{\mathcal{O}}_{10} = i\hat{\mathbf{S}}_N \cdot \frac{\hat{\mathbf{q}}}{m_N}$$

• Acts as leading contributor to higherenergy theories [3]:

$$\mathcal{L} \supset \lambda_1 \phi \bar{\chi} \chi - i h_2 \phi \bar{q} \gamma^5 q \to \hat{\mathcal{H}} \supset \left(c_{10}^0 t^0 + c_{10}^1 t^1 \right) \hat{\mathcal{O}}_{10}$$

$$\begin{split} \hat{\mathcal{O}}_{1} &= \mathbb{1}_{\chi N} & \hat{\mathcal{O}}_{9} = i\hat{\mathbf{S}}_{\chi} \cdot \left(\hat{\mathbf{S}}_{N} \times \frac{\hat{\mathbf{q}}}{m_{N}}\right) \\ \hat{\mathcal{O}}_{2} &= \hat{\mathbf{v}}^{\perp} \cdot \hat{\mathbf{v}}^{\perp} & \hat{\mathcal{O}}_{10} = i\hat{\mathbf{S}}_{N} \cdot \frac{\hat{\mathbf{q}}}{m_{N}} \\ \hat{\mathcal{O}}_{3} &= i\hat{\mathbf{S}}_{N} \cdot \left(\frac{\hat{\mathbf{q}}}{m_{N}} \times \hat{\mathbf{v}}^{\perp}\right) & \hat{\mathcal{O}}_{11} = i\hat{\mathbf{S}}_{\chi} \cdot \frac{\hat{\mathbf{q}}}{m_{N}} \\ \hat{\mathcal{O}}_{4} &= \hat{\mathbf{S}}_{\chi} \cdot \hat{\mathbf{S}}_{N} & \hat{\mathcal{O}}_{12} = \hat{\mathbf{S}}_{\chi} \cdot \left(\hat{\mathbf{S}}_{N} \times \hat{\mathbf{v}}^{\perp}\right) \\ \hat{\mathcal{O}}_{5} &= i\hat{\mathbf{S}}_{\chi} \cdot \left(\frac{\hat{\mathbf{q}}}{m_{N}} \times \hat{\mathbf{v}}^{\perp}\right) & \hat{\mathcal{O}}_{13} = i\left(\hat{\mathbf{S}}_{\chi} \cdot \hat{\mathbf{v}}^{\perp}\right) \left(\hat{\mathbf{S}}_{N} \cdot \frac{\hat{\mathbf{q}}}{m_{N}}\right) \\ \hat{\mathcal{O}}_{6} &= \left(\hat{\mathbf{S}}_{\chi} \cdot \frac{\hat{\mathbf{q}}}{m_{N}}\right) \left(\hat{\mathbf{S}}_{N} \cdot \frac{\hat{\mathbf{q}}}{m_{N}}\right) & \hat{\mathcal{O}}_{14} = i\left(\hat{\mathbf{S}}_{\chi} \cdot \frac{\hat{\mathbf{q}}}{m_{N}}\right) \left(\hat{\mathbf{S}}_{N} \cdot \hat{\mathbf{v}}^{\perp}\right) \\ \hat{\mathcal{O}}_{7} &= \hat{\mathbf{S}}_{N} \cdot \hat{\mathbf{v}}^{\perp} & \hat{\mathcal{O}}_{15} = -\left(\hat{\mathbf{S}}_{\chi} \cdot \frac{\hat{\mathbf{q}}}{m_{N}}\right) \left[\left(\hat{\mathbf{S}}_{N} \times \hat{\mathbf{v}}^{\perp}\right) \cdot \frac{\hat{\mathbf{q}}}{m_{N}}\right] \\ \hat{\mathcal{O}}_{8} &= \hat{\mathbf{S}}_{\chi} \cdot \hat{\mathbf{v}}^{\perp} \end{split}$$

Non-Relativistic Effective Operators

- Spin-independent: $\hat{\mathcal{O}}_1 = \mathbb{1}_{\chi N}$
- Spin-dependent: $\hat{\mathcal{O}}_4 = \hat{\mathbf{S}}_\chi \cdot \hat{\mathbf{S}}_N$
- Novel interactions, such as

$$\hat{\mathcal{O}}_{10} = i\hat{\mathbf{S}}_N \cdot \frac{\hat{\mathbf{q}}}{m_N}$$

• Acts as leading contributor to higherenergy theories [3]:

$$\mathcal{L} \supset \lambda_1 \phi \bar{\chi} \chi - i h_2 \phi \bar{q} \gamma^5 q \to \hat{\mathcal{H}} \supset \left(c_{10}^0 t^0 + c_{10}^1 t^1 \right) \hat{\mathcal{O}}_{10}$$

$$\begin{split} \hat{\mathcal{O}}_{1} &= \mathbb{1}_{\chi N} & \hat{\mathcal{O}}_{9} = i \hat{\mathbf{S}}_{\chi} \cdot \left(\hat{\mathbf{S}}_{N} \times \frac{\hat{\mathbf{q}}}{m_{N}} \right) \\ \hat{\mathcal{O}}_{2} &= \hat{\mathbf{v}}^{\perp} \cdot \hat{\mathbf{v}}^{\perp} & \hat{\mathcal{O}}_{10} = i \hat{\mathbf{S}}_{N} \cdot \frac{\hat{\mathbf{q}}}{m_{N}} \\ \hat{\mathcal{O}}_{3} &= i \hat{\mathbf{S}}_{N} \cdot \left(\frac{\hat{\mathbf{q}}}{m_{N}} \times \hat{\mathbf{v}}^{\perp} \right) & \hat{\mathcal{O}}_{11} = i \hat{\mathbf{S}}_{\chi} \cdot \frac{\hat{\mathbf{q}}}{m_{N}} \\ \hat{\mathcal{O}}_{4} &= \hat{\mathbf{S}}_{\chi} \cdot \hat{\mathbf{S}}_{N} & \hat{\mathcal{O}}_{12} = \hat{\mathbf{S}}_{\chi} \cdot \left(\hat{\mathbf{S}}_{N} \times \hat{\mathbf{v}}^{\perp} \right) \\ \hat{\mathcal{O}}_{5} &= i \hat{\mathbf{S}}_{\chi} \cdot \left(\frac{\hat{\mathbf{q}}}{m_{N}} \times \hat{\mathbf{v}}^{\perp} \right) & \hat{\mathcal{O}}_{13} = i \left(\hat{\mathbf{S}}_{\chi} \cdot \hat{\mathbf{v}}^{\perp} \right) \left(\hat{\mathbf{S}}_{N} \cdot \frac{\hat{\mathbf{q}}}{m_{N}} \right) \\ \hat{\mathcal{O}}_{6} &= \left(\hat{\mathbf{S}}_{\chi} \cdot \frac{\hat{\mathbf{q}}}{m_{N}} \right) \left(\hat{\mathbf{S}}_{N} \cdot \frac{\hat{\mathbf{q}}}{m_{N}} \right) & \hat{\mathcal{O}}_{14} = i \left(\hat{\mathbf{S}}_{\chi} \cdot \frac{\hat{\mathbf{q}}}{m_{N}} \right) \left(\hat{\mathbf{S}}_{N} \cdot \hat{\mathbf{v}}^{\perp} \right) \\ \hat{\mathcal{O}}_{7} &= \hat{\mathbf{S}}_{N} \cdot \hat{\mathbf{v}}^{\perp} & \hat{\mathcal{O}}_{15} = - \left(\hat{\mathbf{S}}_{\chi} \cdot \frac{\hat{\mathbf{q}}}{m_{N}} \right) \left[\left(\hat{\mathbf{S}}_{N} \times \hat{\mathbf{v}}^{\perp} \right) \cdot \frac{\hat{\mathbf{q}}}{m_{N}} \right] \\ \hat{\mathcal{O}}_{8} &= \hat{\mathbf{S}}_{\chi} \cdot \hat{\mathbf{v}}^{\perp} \end{split}$$

Cross Section

• Cross section becomes a large sum over response functions

$$\begin{split} \frac{\mathrm{d}\sigma_{i}}{\mathrm{d}E}(w^{2},q^{2}) &= \frac{m_{T}}{2\pi w^{2}} \ P_{\mathrm{tot}}(w^{2},q^{2}) \\ P_{\mathrm{tot}}(w^{2},q^{2}) &= \frac{4\pi}{2J+1} \sum_{\tau=0,1} \sum_{\tau'=0,1} \left\{ \begin{bmatrix} R_{M}^{\tau\tau'}\left(v_{T}^{\perp 2},\frac{q^{2}}{m_{N}^{2}}\right) \ W_{M}^{\tau\tau'}(y) \\ &+ R_{\Sigma''}^{\tau\tau'}\left(v_{T}^{\perp 2},\frac{q^{2}}{m_{N}^{2}}\right) \ W_{\Sigma''}^{\tau\tau'}(y) + R_{\Sigma'}^{\tau\tau'}\left(v_{T}^{\perp 2},\frac{q^{2}}{m_{N}^{2}}\right) \ W_{\Sigma''}^{\tau\tau'}(y) \end{bmatrix} \\ &+ \frac{q^{2}}{m_{N}^{2}} \left[R_{\Phi''}^{\tau\tau'}\left(v_{T}^{\perp 2},\frac{q^{2}}{m_{N}^{2}}\right) \ W_{\Phi''M}^{\tau\tau'}(y) + R_{\Phi''M}^{\tau\tau'}\left(v_{T}^{\perp 2},\frac{q^{2}}{m_{N}^{2}}\right) \ W_{\Phi''M}^{\tau\tau'}(y) \right] \\ \\ \mathsf{Effective Cross section} &+ R_{\Phi''}^{\tau\tau'}\left(v_{T}^{\perp 2},\frac{q^{2}}{m_{N}^{2}}\right) \ W_{\Phi''}^{\tau\tau'}(y) + R_{\Delta}^{\tau\tau'}\left(v_{T}^{\perp 2},\frac{q^{2}}{m_{N}^{2}}\right) \ W_{\Delta}^{\tau\tau'}(y) \\ \sigma_{p} &= \frac{\left(c_{i}^{\tau}\mu_{n}\right)^{2}}{\pi} &+ R_{\Delta\Sigma'}^{\tau\tau'}\left(v_{T}^{\perp 2},\frac{q^{2}}{m_{N}^{2}}\right) \ W_{\Delta\Sigma'}^{\tau\tau'}(y) \end{bmatrix} \right\} \end{split}$$

٠

Solar Capture

Capt'n General

Capture Process

• Dark matter is captured when it scatters to below the local escape velocity in the Sun

$$C = 4\pi \int_0^{R_{\odot}} \mathrm{d}RR^2 \int_0^\infty \mathrm{d}u \frac{f(u)}{u} w \Omega_v^-(w)$$
$$\Omega_v^-(w) = \sum_i n_i w \Theta \left(\frac{\mu_i}{\mu_{+,i}^2} - \frac{u^2}{w^2}\right) \int_{E_k u^2/w^2}^{E_k \mu_i/\mu_{+,i}^2} \mathrm{d}E_{u^2/w^2}$$

$$E_R \frac{\mathrm{d}\sigma_i}{\mathrm{d}E_R} \left(w^2, q^2 \right)$$

Geometric Limit

• The Sun has a hard limit of dark matter capture

$$C_{\max}(t) = \pi R_{\odot}^2(t) \int_0^\infty \frac{f_{\odot}(u)}{u} w^2(u, R_{\odot}) \mathrm{d}u$$

$$C_{\max}(t) = \frac{1}{3} \pi \frac{\rho_{\chi}}{m_{\chi}} R_{\odot}^{2}(t) \left(e^{-\frac{3}{2} \frac{u_{\odot}^{2}}{u_{0}^{2}}} \sqrt{\frac{6}{\pi}} u_{0} + \frac{6G_{N}M_{\odot} + R_{\odot}(u_{0}^{2} + 3u_{\odot}^{2})}{R_{\odot}u_{\odot}} \operatorname{Erf}\left[\sqrt{\frac{3}{2}} \frac{u_{\odot}}{u_{0}} \right] \right)$$

• We take minimum of the limit and capture rate

Annihilation in the Sun

• The number density of dark matter is given by

$$\frac{\mathrm{d}N_{\chi}\left(t\right)}{\mathrm{d}t} = C\left(t\right) - A\left(t\right) - E\left(t\right) = 0$$

• At steady state, the annihilation rate only depends on the capture:

$$\Gamma_A = (C/2) \tanh^2(t/\tau)$$

• The final neutrino flux is found from branching ratios

$$\frac{\mathrm{d}\Phi_{\nu}}{\mathrm{d}E_{\nu}} = \frac{\Gamma_A}{4\pi D^2} \sum_f B_{\chi}^f \frac{\mathrm{d}N_{\nu}^f}{\mathrm{d}E_{\nu}}$$

Other Applications

- The same calculation in other stars can be performed
 - Working on integration with GARSTEC to facilitate stellar evolution

- Can look at other phenomena like
 - Energy transport [4,5]
 - Modified main sequence lifetimes [6]
 - Triggering thermonuclear explosions in stellar remnants [7-9]

Capt'n General

- Capt'n [10] was designed for capture rate calculations
 - As standalone
 - GAMBIT backend
 - DarkMESA companion
 - GARSTEC integration
- Capt'n uses several parameters to calculate the DM capture rate in s⁻¹
 - Solar model including isotopic abundances
 - Dark matter halo parameters
 - Interaction model

Global and Modular BSM Inference Tool

(GAMBIT)

GAMBIT

- GAMBIT [11] combines many separate branches of physics to perform global scans of novel physics using existing experimental data
- Modular design to promote contributions
- Global scans can pick out signals of new physics before single experiments

IceCube Neutrino Observatory

- For the 79-string run, IceCube's [12] digital optical modules were arranged as:
 - 73 strings with 125 m horizontal spacing and 17 m vertical spacing
 - 6 strings with less than 75 m horizontal spacing and 7 m vertical spacing in the DeepCore [13]
- The data is broken into three independent streams, of two varieties:
 - Low energy: exterior strings act as muon veto for the central array (Summer Low and Winter Low)
 - Higher energy: no restrictions (Winter High)
- IceCube performs better at higher-energy neutrino detection

Direct Detection Experiments

- Fourteen direct detection experiments were included:
 - LUX 2016 [15]
 - XENON1T 2018 [16]
 - PandaX-II 2016 [17] and 2017 [18]
 - PICO-60 2017 [19]
 - CRESST-II [20]
 - CDMSlite [21]
 - DarkSide-50 [22]

- CRESST-III [29]
- LZ [30]
- PandaX-4T [31]
- SIMPLE [32]
- SuperCDMS [33]
- XENON100 [34]

- Additionally, projections are included from:
 - DARWIN [35]
 - PICO-500 [36]

Added Experiments

- Four extra experiments were included in a post processing run:
 - ANTARES from Dark Ghosts 2022 presented by Chiara Poirè [23]
 - IceCube Update from Dark Ghosts 2022 presented by Stephan Meighen-Berger [24]

 10^{-37}

 10^{-38}

 $\sigma^{\rm SD}_{\chi N} \ \left[{\rm cm^2}_{2m} \right]$

 10^{-40}

 10^{-41}

This work

IceCube Work in Progress

 10^{3}

 m_{χ} [GeV]

--- IC 2016

 $b\bar{b}$

 W^+W

 $\tau^+\tau^-$

- SuperK analysis from 2015 [27]
- DeepCore analysis from 2022 [28]

Results and Scans

GAMBIT Scan Parameters

• The common parameters are shared between all GAMBIT scans

Common model parameters

$$\begin{array}{ll} \log_{10}(m_{\rm dm}) \ ({\rm GeV}) & (0, 4) \\ \rho_0 \ ({\rm GeV \, cm^{-3}}) & 0.5 \\ v_0 \ ({\rm km \ sec^{-1}}) & (216, 264) \\ v_{rot} \ ({\rm km \ sec^{-1}}) & (216, 264) \\ v_{esc} \ ({\rm km \ sec^{-1}}) & (453, 603) \end{array}$$

- These scans are presented as profiled likelihoods with 90% C.L.
- All scans have 3 decay channel versions: bottom quark, W boson, and tau

Coupling parameters (GeV^{-2}) $\log_{10}(c_1^0)$ (-10, -6) $\log_{10}(c_3^0)$ (-6, -3) $\log_{10}(c_4^0)$ (-8, -3) $\log_{10}(c_5^0)$ (-5, -2) $\log_{10}(c_6^0)$ (-5, -1) $\log_{10}(c_7^0)$ (-4, -1) $\log_{10}(c_8^0)$ (-6, -4) $\log_{10}(c_9^0)$ (-6, -1) $\log_{10}(c_{10}^0)$ (-6, -2) $\log_{10}(c_{11}^0)$ (-9, -5) $\log_{10}(c_{12}^0)$ (-8, -4) $\log_{10}(c_{13}^0)$ (-5, -1) $\log_{10}(c_{14}^0)$ (-3, 1) $\log_{10}(c_{15}^0)$ (-5, -2)

Spin-Independent and Spin-Dependent Channel

• The three annihilation channels for c_1 (top) and c_4 (bottom)

21

C₇ and C₁₀ Coupling Experiment Breakdown

Future Outlook

• Future prospects for neutrino telescopes in comparison with direct detection

Projection = IC2022 ×
$$\left(\frac{V}{V_{\rm IC2022}}\frac{T}{T_{\rm IC2022}}\right)^{-\frac{1}{2}}$$

Conclusions

Conclusions

- Capt'n open to public and has already seen use by GAMBIT community (2106.02056)
- This is some of the first set of global constraints on non-relativistic effective operator dark matter from direct detection experiments in addition to solar neutrinos
- IceCube solar neutrinos can assist with spin-dependent direct detection searches
- Whenever new data is added to GAMBIT this work can be re-run with trivial modifications to improve constraints
- This work has been modified for use in a Supernova scattering search lead by Christopher Cappiello
- Current work to use this in stellar evolution and solar calibration

- [1] M. Schumann, Direct Detection of WIMP Dark Matter: Concepts and Status, J. Phys. G 46 (2019) 103003, [arXiv:1903.03026].
- [2] A. L. Fitzpatrick, W. Haxton, E. Katz, N. Lubbers, and Y. Xu, *The Effective Field Theory of Dark Matter Direct Detection, JCAP* **02** (2013) 004, [arXiv:1203.3542].
- [3] J. B. Dent, L. M. Krauss, J. L. Newstead, and S. Sabharwal, *General analysis of direct dark matter detection: From microphysics to observational signatures, Phys. Rev. D* 92 (2015) 063515, [arXiv:1505.03117].
- [4] A. C. Vincent and P. Scott, *Thermal conduction by dark matter with velocity and momentum-dependent cross-sections, JCAP* **04** (2014) 019, [arXiv:1311.2074].
- [5] A. C. Vincent, P. Scott, and A. Serenelli, Updated constraints on velocity and momentum-dependent asymmetric dark matter, JCAP **11** (2016) 007, [arXiv:1605.06502].
- [6] J. Lopes and I. Lopes, Asymmetric Dark Matter Imprint on Low-mass Main-sequence Stars in the Milky Way Nuclear Star Cluster, Astrophys. J. 879 (2019) 50, [arXiv:1907.05785].
- [7] J. Bramante, Dark matter ignition of type la supernovae, Phys. Rev. Lett. 115 (2015) 141301, [arXiv:1505.07464].

- [8] J. F. Acevedo, J. Bramante, A. Goodman, J. Kopp, and T. Opferkuch, *Dark Matter, Destroyer of Worlds: Neutrino, Thermal, and Existential Signatures from Black Holes in the Sun and Earth, JCAP* **04** (2021) 026, [arXiv:2012.09176].
- [9] N. F. Bell, G. Busoni, S. Robles, and M. Virgato, Improved Treatment of Dark Matter Capture in Neutron Stars, JCAP 09 (2020) 028, [arXiv:2004.14888].
- [10] N. Avis Kozar, A. Caddell, L. Fraser-Leach, P. Scott, and A. C. Vincent, Capt'n General: A generalized stellar dark matter capture and heat transport code, in Tools for High Energy Physics and Cosmology (2021) [arXiv:2105.06810].
- [11] GAMBIT: P. Athron et. al., GAMBIT: The Global and Modular Beyond-the-Standard-Model Inference Tool, Eur. Phys. J. C 77 (2017) 784, [arXiv:1705.07908]. [Addendum: Eur.Phys.J.C 78, 98 (2018)].
- [12] IceCube: P. Scott et. al., Use of event-level neutrino telescope data in global fits for theories of new physics, JCAP 11 (2012) 057, [arXiv:1207.0810].
- [13] IceCube: R. Abbasi et. al., The Design and Performance of IceCube DeepCore, Astropart. Phys. **35** (2012) 615–624, [arXiv:1109.6096].
- [14] IceCube: M. G. Aartsen *et. al., Search for Neutrinos from Dark Matter Self-Annihilations in the center of the Milky Way with 3 years of IceCube/DeepCore, Eur. Phys. J. C* 77 (2017) 627, [arXiv:1705.08103].
- [15] LUX: D. S. Akerib et. al., Results from a search for dark matter in the complete LUX exposure, Phys. Rev. Lett. 118 (2017) 021303, [arXiv:1608.07648].

- [16] XENON: E. Aprile et. al., Dark Matter Search Results from a One Ton-Year Exposure of XENON1T, Phys. Rev. Lett. **121** (2018) 111302, [arXiv:1805.12562]
].
- [17] PandaX-II: A. Tan et. al., Dark Matter Results from First 98.7 Days of Data from the PandaX-II Experiment, Phys. Rev. Lett. **117** (2016) 121303, [arXiv:1607.07400].
- [18] PandaX-II: X. Cui et. al., Dark Matter Results From 54-Ton-Day Exposure of PandaX-II Experiment, Phys. Rev. Lett. **119** (2017) 181302, [arXiv:1708.06917].
- [19] PICO: C. Amole et. al., Dark Matter Search Results from the PICO-60 C3F8 Bubble Chamber, Phys. Rev. Lett. **118** (2017) 251301, [arXiv:1702.07666].
- [20] CRESST: G. Angloher et. al., Results on light dark matter particles with a low-threshold CRESST-II detector, Eur. Phys. J. C 76 (2016) 25, [arXiv:1509.01515].
- [21] SuperCDMS: R. Agnese et. al., New Results from the Search for Low-Mass Weakly Interacting Massive Particles with the CDMS Low Ionization Threshold Experiment, Phys. Rev. Lett. **116** (2016) 071301, [arXiv:1509.02448].
- [22] DarkSide: P. Agnes et. al., DarkSide-50 532-day Dark Matter Search with Low-Radioactivity Argon, Phys. Rev. D 98 (2018) 102006, [arXiv:1802.07198].

- [23] ANTARES: C. Poirè, Limits for Dark Matter annihilation in the Sun with ANTARES neutrino telescope, Dark Ghosts 2022, [PDF].
- [24] IceCube: S. Meighen-Berger, *Dark Matter Searches with IceCube, Dark Ghosts* 2022, [PDF].
- [25] GAMBIT: G. D. Martinez, J. McKay, et. al., Comparison of statistical sampling methods with ScannerBit, the GAMBIT scanning module, Eur. Phys. J. C 77 (2017) 761, [arXiv:1705.07959].
- [26] R. Catena and B. Schwabe, Form factors for dark matter capture by the Sun in effective theories, JCAP 04 (2015) 042, [arXiv:1501.03729].
- [27] Super-Kamiokande: K. Choi et. al., Search for neutrinos from annihilation of captured low-mass dark matter particles in the Sun by Super-Kamiokande, Phys. Rev. Lett. **114** (2015) 141301, [arXiv:1503.04858].
- [28] IceCube: R. Abbasi, M. Ackermann, et. al., Search for GeV-scale Dark Matter Annihilation in the Sun with IceCube DeepCore, Physical Review D 105 (2022) 062004, [arXiv:2111.09970].
- [29] CRESST: A. H. Abdelhameed, G. Angloher, et. al., First results from the CRESST-III low-mass dark matter program, Physical Review D 100 (2019) 102002, [arXiv:1904.00498].
- [30] LZ: J. Aalbers et. al., First Dark Matter Search Results from the LUX-ZEPLIN (LZ) Experiment, Phys. Rev. Lett. **131** (2023) 041002, [arXiv:2207.03764].

- [31] PandaX-4T: Y. Meng et. al., Dark Matter Search Results from the PandaX-4T Commissioning Run, Phys. Rev. Lett. **127** (2021) 261802, [arXiv:2107.13438].
- [32] SIMPLE: M. Felizardo et. al., The SIMPLE Phase II Dark Matter Search, Phys. Rev. D 89 (2014) 072013, [arXiv:1404.4309].
- [33] SuperCDMS: R. Agnese et. al., Search for Low-Mass Weakly Interacting Massive Particles with SuperCDMS, Phys. Rev. Lett. **112** (2014) 241302, [arXiv:1402.7137].
- [34] XENON100: E. Aprile et. al., Dark Matter Results from 225 Live Days of XENON100 Data, Phys. Rev. Lett. **109** (2012) 181301, [arXiv:1207.5988].
- [35] M. Schumann, L. Baudis, L. B["]utikofer, A. Kish, and M. Selvi, *Dark matter sensitivity of multi-ton liquid xenon detectors*, *JCAP* **10** (2015) 016, [arXiv:1506.08309].
- [36] S. Fallows, *Toward a next-generation dark matter search with the PICO-40L bubble chamber*, 2017, https://indi.to/zYZVC.

Backup Slides

Advantages of an Effective Field Theory

- High-energy theory parameterization
- Fitzpatrick et. al. [2] describe a toy model dark matter effective field theory
- Dark matter substructure can be ignored at galactic halo velocities

$$\hat{\mathbf{q}}_{\max} = 200 \text{ MeV}$$

Scanning with Diver

- Diver is a differential evolution scanner in GAMBIT
- It can rapidly map likelihood contours
- But cannot give posteriors
- Differential evolution occurs in three steps
 - Mutation
 - Crossover
 - Selection

SuperK and DeepCore

- SuperK analysis from 2015 [27]
- DeepCore analysis from 2022 [28]

Dent et. al. [3] Tables

• Spin-0 Wimp

TABLE VII. Non-relativistic reduction of operators for a spin-0 WIMP

TABLE IX. Non-relativistic reduction of operators for a spin- $\frac{1}{2}$ WIMP via a charged mediator (after using Fierz identities)

Dent et. al. [3] Tables

• Spin-1/2 WIMP

TABLE VIII. Operators for a spin- $\frac{1}{2}$ WIMP via a neutral mediator

Scalar Mediator		
$ar{\chi}\chiar{q}q$	$\longrightarrow \left(\frac{h_1^N \lambda_1}{m_{\phi}^2}\right) \mathcal{O}_1$	
$ar{\chi}\chiar{q}\gamma^5 q$	$\longrightarrow \left(\frac{h_2^N \lambda_1}{m_{\phi}^2}\right) \mathcal{O}_{10}$	
$ar{\chi}\gamma^5\chiar{q}q$	$\longrightarrow \left(-\frac{h_1^N \lambda_2 m_N}{m_\phi^2 m_\chi}\right) \mathcal{O}_{11}$	
$\bar{\chi}\gamma^5\chi\bar{q}\gamma^5q$	$\longrightarrow \left(\frac{h_2^N \lambda_2 m_N}{m_\phi^2 m_\chi}\right) \mathcal{O}_6$	

Vector Mediator

$\bar{\chi}\gamma^{\mu}\chi\bar{q}\gamma_{\mu}q$	$\longrightarrow \left(-rac{h_3^N\lambda_3}{m_G^2} ight)\mathcal{O}_1$
$\bar{\chi}\gamma^{\mu}\chi\bar{q}\gamma_{\mu}\gamma^{5}q$	$\longrightarrow \left(-\frac{2h_4^N\lambda_3}{m_G^2}\right)\left(-\mathcal{O}_7 + \frac{m_N}{m_\chi}\mathcal{O}_9\right)$
$\bar{\chi}\gamma^{\mu}\gamma^{5}\chi\bar{q}\gamma_{\mu}q$	$\longrightarrow \left(-rac{2h_3^N\lambda_4}{m_G^2} ight)(\mathcal{O}_8+\mathcal{O}_9)$
$\bar{\chi}\gamma^{\mu}\gamma^{5}\chi\bar{q}\gamma_{\mu}\gamma^{5}q$	$\longrightarrow \left(\frac{4h_4^N\lambda_4}{m_G^2}\right)\mathcal{O}_4$

erz identities)	
Charged Scalar Mediat	tor
$\overline{\bar{\chi}\chi\bar{q}q}$	$\longrightarrow \frac{l_2^{\dagger} l_2 - l_1^{\dagger} l_1}{4m_{\Phi}^2} f_{Tq}^N \mathcal{O}_1$
$ar{\chi}\chiar{q}\gamma^5 q$	$\longrightarrow i \frac{l_1^{\dagger} l_2 - l_2^{\dagger} l_1}{4m_{\Phi}^2} \Delta \tilde{q}^N \mathcal{O}_{10}$
$ar{\chi}\gamma^5\chiar{q}q$	$\longrightarrow i rac{l_2^\dagger l_1 - l_1^\dagger l_2}{4m_\Phi^2} rac{m_N}{m_\chi} f^N_{Tq} \mathcal{O}_{11}$
$ar{\chi}\gamma^5\chiar{q}\gamma^5q$	$\longrightarrow rac{l_1^{\dagger} l_1 - l_2^{\dagger} l_2}{4m_{\Phi}^2} rac{m_N}{m_{\chi}} \Delta \widetilde{q}^N \mathcal{O}_6$
$ar{\chi}\gamma^\mu\chiar{q}\gamma_\mu q$	$\longrightarrow -rac{l_1^\dagger l_1 + l_2^\dagger l_2}{4m_{\Phi}^2}\mathcal{N}_q^N\mathcal{O}_1$
$ar{\chi}\gamma^{\mu}\gamma^{5}\chiar{q}\gamma_{\mu}q$	$\longrightarrow rac{l_1^\dagger l_2 + l_2^\dagger l_1}{2m_{\Phi}^2} \mathcal{N}_q^N(\mathcal{O}_8 + \mathcal{O}_9)$
$ar{\chi}\gamma^\mu\chiar{q}\gamma_\mu\gamma^5 q$	$\longrightarrow \frac{l_1^{\dagger} l_2 + l_2^{\dagger} l_1}{2m_{\Phi}^2} \Delta_q^N (\mathcal{O}_7 - \frac{m_N}{m_{\chi}} \mathcal{O}_9)$
$ar{\chi}\gamma^{\mu}\gamma^5\chiar{q}\gamma_{\mu}\gamma^5q$	$\longrightarrow -rac{l_1^\dagger l_1 + l_2^\dagger l_2}{m_{\Phi}^2} \Delta_q^N \mathcal{O}_4$
$\bar{\chi}\sigma^{\mu u}\chi\bar{q}\sigma_{\mu u}q$	$\longrightarrow rac{l_2^{+}l_2 - l_1^{+}l_1}{m_{\Phi}^2} \delta_q^N \mathcal{O}_4$
$\epsilon_{\mu ulphaeta}ar\chi\sigma^{\mu u}\chiar q\sigma^{lphaeta}q$	$\longrightarrow \frac{l_2^{\dagger} l_1 - l_1^{\dagger} l_2}{m_{\Phi}^2} \delta_q^N (i\mathcal{O}_{10} - i\frac{m_N}{m_{\chi}}\mathcal{O}_{11} + 4\mathcal{O}_{12})$
Charged Vector Media	tor
$\overline{\bar{\chi}\chi\bar{q}q}$	$\longrightarrow rac{d_2^{\dagger} d_2 - d_1^{\dagger} d_1}{4 m_V^2} f_{Tq}^N \mathcal{O}_1$
$ar{\chi}\chiar{q}\gamma^5 q$	$\longrightarrow i rac{d_2^\dagger d_1 - d_1^\dagger d_2}{4m_V^2} \Delta \tilde{q}^N \mathcal{O}_{10}$
$ar{\chi}\gamma^5\chiar{q}q$	$\longrightarrow i rac{d_2^\dagger d_1 - d_1^\dagger d_2}{4m_V^2} rac{m_N}{m_\chi} f^N_{Tq} \mathcal{O}_{11}$
$ar{\chi}\gamma^5\chiar{q}\gamma^5q$	$\longrightarrow rac{d_2^{\dagger} d_2 - d_1^{\dagger} d_1}{4m_V^2} rac{m_N}{m_\chi} \Delta ilde{q}^N \mathcal{O}_6$
$ar{\chi}\gamma^\mu\chiar{q}\gamma_\mu q$	$\longrightarrow rac{d_2^\dagger d_2 + d_1^\dagger d_1}{8m_V^2} \mathcal{N}_q^N \mathcal{O}_1$
$ar{\chi}\gamma^\mu\gamma^5\chiar{q}\gamma_\mu q$	$\longrightarrow -rac{d_2^\dagger d_1 + d_1^\dagger d_2}{4m_V^2}\mathcal{N}_q^N(\mathcal{O}_8 + \mathcal{O}_9)$
$ar{\chi}\gamma^\mu\chiar{q}\gamma_\mu\gamma^5 q$	$\longrightarrow \frac{d_2^{\dagger} d_1 + d_1^{\dagger} d_2}{4m_V^2} \Delta_q^N (\mathcal{O}_7 - \frac{m_N}{m_\chi} \mathcal{O}_9)$
$ar{\chi}\gamma^\mu\gamma^5\chiar{q}\gamma_\mu\gamma^5 q$	$\longrightarrow -rac{d_2^\dagger d_2 + d_1^\dagger d_1}{2m_V^2} \Delta_q^N \mathcal{O}_4$
	•

Dent et. al. [3] Tables

Spin-1 WIMP ٠

Scalar Mediator	
$X^{\dagger}_{\mu}X^{\mu} \bar{q}q$	$\longrightarrow \left(rac{b_1 h_1^N}{m_{\phi}^2} ight) \mathcal{O}_1$
$X^{\dagger}_{\mu}X^{\mu}ar{q}\gamma^5 q$	$\longrightarrow \left(\frac{b_1 h_2^N}{m_{\phi}^2} \right) \mathcal{O}_{10}$
Vector Mediator	
$(X^{\dagger}_{\nu}\partial_{\mu}X^{\nu}-\partial_{\mu}X^{\dagger}_{\nu}X^{\nu})(\bar{q}\gamma^{\mu}q)$	$\longrightarrow 0$
$(X^{\dagger}_{\nu}\partial_{\mu}X^{\nu} - \partial_{\mu}X^{\dagger}_{\nu}X^{\nu})(\bar{q}\gamma^{\mu}\gamma^{5}q)$	$\longrightarrow \left(rac{-3b_5h_4^N}{m_G^2}rac{m_N}{m_X} ight)\mathcal{O}_{10}$
$\partial_{\nu}(X^{\nu\dagger}X_{\mu}+X^{\dagger}_{\mu}X^{\nu})(\bar{q}\gamma^{\mu}q)$	$\longrightarrow \left(\frac{\operatorname{Re}(b_6)h_3^N}{m_G^2} \frac{m_N}{m_X} \right) \left(\mathcal{O}_5 + \mathcal{O}_6 - \frac{q^2}{m_N^2} \mathcal{O}_4 \right)$
$\partial_{\nu}(X^{\nu\dagger}X_{\mu}+X^{\dagger}_{\mu}X^{\nu})(\bar{q}\gamma^{\mu}\gamma^{5}q)$	$\longrightarrow \left(-\frac{2\operatorname{Re}(b_6)h_4^N}{m_G^2}\frac{m_N}{m_X} ight)\mathcal{O}_9$
$\partial_{ u}(X^{ u\dagger}X_{\mu}-X^{\dagger}_{\mu}X^{ u})(\bar{q}\gamma^{\mu}q)$	$\longrightarrow \left(-\frac{4\mathrm{Im}(b_6)h_3^N}{m_G^2}\frac{m_N}{m_X}\right)\mathcal{O}_{17}$
$\partial_{ u}(X^{ u\dagger}X_{\mu} - X^{\dagger}_{\mu}X^{ u})(\bar{q}\gamma^{\mu}\gamma^{5}q)$	$\longrightarrow \left(\frac{4 \mathrm{Im}(b_6) h_4^N}{m_G^2} \frac{m_N}{m_X} \right) \mathcal{O}_{18}$
$\epsilon_{\mu\nu\rho\sigma} \left(X^{\nu\dagger} \partial^{\rho} X^{\sigma} + X^{\nu} \partial^{\rho} X^{\sigma\dagger} \right) (\bar{q} \gamma^{\mu} q)$	$\longrightarrow \left(\frac{\operatorname{Re}(b_7)h_3^N}{m_G^2} \frac{m_N}{m_X} \right) \mathcal{O}_{11}$
$\epsilon_{\mu\nu\rho\sigma} \left(X^{\nu\dagger} \partial^{\rho} X^{\sigma} + X^{\nu} \partial^{\rho} X^{\sigma\dagger} \right) (\bar{q} \gamma^{\mu} \gamma^5 q)$	$\longrightarrow \left(\frac{\operatorname{Re}(b_7)h_4^N}{m_G^2}\frac{m_N}{m_X}\right) \left(i\frac{q^2}{m_X m_N}\mathcal{O}_4 - i\frac{m_N}{m_X}\mathcal{O}_6 - 2\mathcal{O}_{14}\right)$
$\epsilon_{\mu\nu\rho\sigma} \left(X^{\nu\dagger} \partial^{\rho} X^{\sigma} - X^{\nu} \partial^{\rho} X^{\sigma\dagger} \right) (\bar{q} \gamma^{\mu} q)$	$\longrightarrow \left(rac{2 \mathrm{Im}(b_7) h_3^N}{m_G^2} ight) \left(\mathcal{O}_8 + \mathcal{O}_9 ight)$
$\epsilon_{\mu\nu\rho\sigma} \left(X^{\nu\dagger} \partial^{\rho} X^{\sigma} - X^{\nu} \partial^{\rho} X^{\sigma\dagger} \right) \left(\bar{q} \gamma^{\mu} \gamma^{5} q \right)$	$\longrightarrow \left(rac{4 { m Im}(b_7) h_4^N}{m_G^2} ight) \mathcal{O}_4$

TABLE X. Non-relativistic reduction of operators for a spin-1 WIMP

Charged Spinor Mediator

 $(X^{\dagger}_{\mu}X_{\nu})(\bar{q}\gamma^{\mu}\gamma^{\nu}q)$

 $\begin{array}{c} \left(\frac{y_3^{\dagger}y_3 - y_4^{\dagger}y_4}{m_Q m_X}\right) \left(f_{Tq}^N \mathcal{O}_1 + 2\delta_q^N \mathcal{O}_4\right) \\ \left(\frac{y_4^{\dagger}y_3 - y_3^{\dagger}y_4}{m_Q m_X}\right) \left(i\Delta_{\tilde{q}}^N \mathcal{O}_{10} + i\delta_q^N \mathcal{O}_{11} - 2i\delta_q^N \mathcal{O}_{12} - 2i\delta_q^N \mathcal{O}_{18}\right) \end{array}$ $(X^{\dagger}_{\mu}X_{\nu})(\bar{q}\gamma^{\mu}\gamma^{\nu}\gamma^{5}q)$ \longrightarrow

GAMBIT-Capt'n Dependency

- Capt'n acts as a backend of DarkBit
- It is used to calculate the capture rate for GAMBIT

GAMBIT Direct Detection

• DDCalc acts to translate the couplings to cross sections for the DD experiments

c₁ Channels

c₃ Channels

c₄ Channels

c₅ Channels

c₆ Channels

c₇ Channels

c₈ Channels

c₉ Channels

c₁₀ Channels

c₁₁ Channels

c₁₂ Channels

c₁₃ Channels

c₁₄ Channels

c₁₅ Channels

Nuisance Parameters

• The nuisance parameters showed no preference

