

Sachdev-Ye-Kitaev (SYK) model on a noisy quantum computer

Bharath Sambasivam, Syracuse University

DPF-PHENO 2024

Based on 2311.17991 (PRD, 1 May 2024) with Dr. Muhammad Asaduzzaman (U Iowa), Dr. Raghav Jha (Jefferson Lab)

Quantum Computing- What? and Why?

- Quantum computers use qubits to represent states
- An *N* qubit state lives in a 2^{*N*} dimensional Hilbert space; measurement "collapses" it to one basis state
- "Quantum Advantage" due to superposition + entanglement
- Need to track 2^N complex numbers, classically
- Becomes hard to do for $\sim \mathcal{O}(100)$ qubits

Quantum Computing- What? and θ Why? Quantum computers use qubits to represent states An N qubit state lives in a 2^N dimensional Hilbert space; $|1\rangle$ measurement "collapses" it to one basis state **PSPACE** problems "Quantum Advantage" due to superposition + entanglement NP problems Need to track 2^N complex numbers, classically NP complete Becomes hard to do for $\sim \mathcal{O}(100)$ qubits BQP P problems Are there any interesting HEP problems here? P↔NP BQP ↔QMA

Scattering and Dynamics

- Lattice methods are valuable for computing static observables in field theories even in strong coupling
- Dynamical observables like scattering amplitudes are harder to measure
- Requires 3 ingredients

Scattering and Dynamics

- Lattice methods are valuable for computing static observables in field theories even in strong coupling
- Dynamical observables like scattering amplitudes are harder to measure
- Requires 3 ingredients

Operator	Gate(s)	Matrix
Pauli-X (X)	- x -	$ \bigoplus $ $ \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix} $
Pauli-Y (Y)	- Y -	$\begin{bmatrix} 0 & -i \\ i & 0 \end{bmatrix}$
Pauli-Z (Z)	- Z -	$\begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix}$
Hadamard (H) – H–	$rac{1}{\sqrt{2}} \begin{bmatrix} 1 & 1 \\ 1 & -1 \end{bmatrix}$
Phase (S, P)	$-\mathbf{S}$	$\begin{bmatrix} 1 & 0 \\ 0 & i \end{bmatrix}$
$\pi/8~(\mathrm{T})$	- T -	$\begin{bmatrix} 1 & 0 \\ 0 & e^{i\pi/4} \end{bmatrix}$
Controlled No (CNOT, CX)	ot	$\begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \end{bmatrix}$
Controlled Z		$\begin{array}{c} \bullet \\ \bullet \\ \bullet \\ \end{array} \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & -1 \end{bmatrix}$
SWAP		$\begin{array}{c} \star \\ \star \\ \star \\ \end{array} \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$
Toffoli (CCNOT, CCX, TOFF)		$\begin{bmatrix} 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 \end{bmatrix}$
On a Quant	um Compu	ıter
$\begin{array}{c c} 0\rangle \\ \vdots \\ 0\rangle \end{array} \begin{array}{c} U_{SP} \end{array}$	e^{-iHt}	ς ΙΨγ
Dynamics of non-relatis in BQP	tivistic many-	-body systems

Jordan, Lee, Preskill showed advantage for scalar ϕ^4 scattering

Scattering and Dynamics

- Lattice methods are valuable for computing static observables in field theories even in strong coupling
- Dynamical observables like scattering amplitudes are harder to measure
- Requires 3 ingredients

Sperator	$\mathbf{Gate}(\mathbf{s})$	Matrix
Pauli-X (X)	- x -	$- \bigoplus \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$
Pauli-Y (Y)	- Y -	$\begin{bmatrix} 0 & -i \\ i & 0 \end{bmatrix}$
Pauli-Z (Z)	$-\mathbf{Z}$	$\begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix}$
Hadamard (H)	$-\mathbf{H}$	$rac{1}{\sqrt{2}} \begin{bmatrix} 1 & 1 \\ 1 & -1 \end{bmatrix}$
Phase (S, P)	$-\mathbf{S}$	$\begin{bmatrix} 1 & 0 \\ 0 & i \end{bmatrix}$
$\pi/8~(\mathrm{T})$	- T -	$\begin{bmatrix} 1 & 0 \\ 0 & e^{i\pi/4} \end{bmatrix}$
Controlled Not (CNOT, CX)		$\begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \end{bmatrix}$
Controlled Z (CZ)		$\begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & -1 \end{bmatrix}$
SWAP		$\begin{array}{c c} & & & \\ & & \\ & & \\ & & \\ & \\ & \\ & \\ $
Toffoli (CCNOT, CCX, TOFF)		$\begin{bmatrix} 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 1 \end{bmatrix}$
Quantur	n Comp	uter
0	e−iHt	。 • Ψ}

Jordan, Lee, Preskill showed advantage for scalar

 $|0\rangle$

 $|0\rangle$

Dynamics

is in **BQP**

 ϕ^4 scattering

Sachdev-Ye-Kitaev (SYK) model

- SYK is a (0+1)D quantum mechanical model of N_f Majorana fermions $\{\chi_i, \chi_j\} = \delta_{i,j}$
 - $H = \frac{1}{4!} \sum_{i,j,k,l} J_{ijkl} \chi_i \chi_j \chi_k \chi_l \qquad \sigma = \sqrt{\frac{3!J^2}{N_f^3}}$
- Time reversal symmetry $\mathcal{T}\chi_a\mathcal{T}^{-1} = \chi_a$; Fermion number (mod 2) operator symmetry
- $N_f \rightarrow \infty, \beta J \gg 1$, the model develops and approximate conformal symmetry (time reparametrization)

Goal: Do e^{-iHt} for SYK model

- It is a chaotic system for $N_f > 4$
- Has been used as a mean field model for non-Fermi liquids
- This is related to near *AdS*₂ gravity and eternal blackholes via holography!

4

Sachdev-Ye-Kitaev (SYK) model

- SYK is a (0+1)D quantum mechanical model of N_f Majorana fermions $\{\chi_i, \chi_j\} = \delta_{i,j}$
 - $H = \frac{1}{4!} \sum_{i,j,k,l} J_{ijkl} \chi_i \chi_j \chi_k \chi_l \qquad \sigma = \sqrt{\frac{3!J^2}{N_f^3}}$
- Time reversal symmetry $\mathcal{T}\chi_a\mathcal{T}^{-1} = \chi_a$; Fermion number (mod 2) operator symmetry
- $N_f \rightarrow \infty, \beta J \gg 1$, the model develops and approximate conformal symmetry (time reparametrization)

Goal: Do e^{-iHt} for SYK model

- It is a chaotic system for $N_f > 4$
- Has been used as a mean field model for non-Fermi liquids
- This is related to near AdS_2 gravity and eternal blackholes via holography!

III

IV

(1)

R x S_{D-1}

 $U_L(t)$

 e^{igV}

2

 $R \ge S_{D-1}$

 $|\psi|$

0

Π

 $U_L(-t)$

Scrambling and OTOCs

Scrambling: The quantum information stored between a small number of d.o.f's gets spread to an exponentially large number of d.o.f's

 Chaos in quantum mechanical systems can be quantified by the Out-of-Time-Ordered Correlator (OTOC)

 $O(t) = -\langle [W(t), V(0)]^{\dagger} [W(t), V(0)] \rangle = 2(1 - \langle W^{\dagger}(t)V^{\dagger}(0)W(t)V(0) \rangle)$

- The OTOC grows as $e^{\lambda_L t}$ when $t_d < t < t_*$ for chaotic systems, and saturates beyond
- Chaos bound conjecture: $\lambda_L \leq \frac{2\pi k_B T}{\hbar}$ for quantum mechanical systems at finite temperature T
- This is saturated by blackholes, which have a temperature $T_H = \frac{\hbar c^3}{8\pi G M k_B}$
- The low-temperature, large N_f SYK model also saturates this bound, making it interesting to study

Trotter evolution

Gate costs can be reduced by grouping Pauli terms into commuting clus

$$H = \sum_{i} H_{i} \qquad [H_{i}, H_{j}] \neq 0 \quad \text{for} \quad i \neq j$$

$$H_{i} = \sum_{j} \alpha_{j} \prod_{k} \sigma_{k}^{j} \qquad \left[\prod_{k} \sigma_{k}^{j}, \prod_{l} \sigma_{l}^{m} \right] = 0 \forall m, j$$

Then exponentiate each piece and diagonalize them simultaneously

$$e^{-iHt} = e^{-iHr\delta t} \approx \left(\prod_{i} e^{-iH_i\delta t}\right)$$

		This	work						
ubit g	ate Co	mplexity	Work						
0(I	$V^{10}t^{2}$	/ε)	1607.08560 (2016)						
$\mathcal{O}(N^8t^2/\epsilon)$			2008	3.02303 (2020)					
0($N^5 t^2/$	(ε)	2311	.17991 (2023)					
	N _f	Pauli Strings	Clusters	2-qubit gates					
sters	4	1	1	2					
	6	15	5	30					
	8	70	6	110					
	10	210	23	498					
	12	495	57	1504					
	14	1001	92	3560					
	16	1820	116	6812					
	18	3060	175	11962					
	20	4845	246	19984					

Effective trotter parameter for SYK is $\sigma \, \delta t \sim J \delta t / N_f^{3/2}$. So, we take $\delta t \sim \mathcal{O}(1)$

Paper: https://dl.acm.org/doi/10.1145/359094.359101 Paper: 2305.11847

OTOC ($N_f = 6$) \sim Number of ECR gates 46 81 1171531892212571.00.80.6 $O_{10}(t)$ 0.4Exact disorder average 0.2Eagle_r3 device disorder average ¥ Simulated protocol average 0.0 3.0 6.0 0.01.54.57.59.0t

Conclusions and Outlook

- The SYK model is a simple fermionic model that is interesting for
 - Holography
 - Chaos
- We studied the SYK model on quantum computers and propose an improved scaling of $O(N^5 t^2/\epsilon)$ using graph-coloring techniques
- We did hardware simulation of small systems of size $N_f = 6, 8$ and used error mitigation techniques
- We see great agreement with exact evolution for both the return probability and the OTOC
- Non-trotter-based approaches such as variational methods and Cartan tricks can also be explored
- Ongoing work: Studying finite-temperature Gibbs state preparation for the SYK model

Thermal Gibbs States- simulator results

2405.XXXX with Jack Araz, Raghav Jha, Felix Ringer

Thank You

bsambasi@syr.edu

2311.17991 (PRD, 1 May 2024), 2405.XXXX

https://zenodo.org/records/10202045

Backup slides

Digitization

Jordan-Wigner mapping

$$\chi_{2k-1} = \frac{1}{\sqrt{2}} \left(\prod_{j=1}^{k-1} Z_j \right) X_k \mathbb{I}^{\otimes (N-2k)/2} \qquad \chi_{2k} = \frac{1}{\sqrt{2}} \left(\prod_{j=1}^{k-1} Z_j \right) Y_k \mathbb{I}^{\otimes (N-2k)/2}$$

- N_f Majorana fermions requires $\frac{N_f}{2}$ qubits using the Jordan-Wigner mapping to Pauli Strings
- The number of Pauli strings is then $\binom{N_f}{4}$ and grows like $\sim N^q$

Operator Gate(s) Matrix										
Pauli-X (X)	- X -		$\begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$							
Pauli-Y (Y)	- Y -		$\begin{bmatrix} 0 & -i \\ i & 0 \end{bmatrix}$							
Pauli-Z (Z)	- Z -		$\begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix}$							
Hadamard (H)	— H —		$\frac{1}{\sqrt{2}} \begin{bmatrix} 1 & 1\\ 1 & -1 \end{bmatrix}$							
Phase (S, P)	- S -		$\begin{bmatrix} 1 & 0 \\ 0 & i \end{bmatrix}$							
$\pi/8~(\mathrm{T})$	- T -		$\begin{bmatrix} 1 & 0 \\ 0 & e^{i\pi/4} \end{bmatrix}$	1						
Controlled Not (CNOT, CX)			$\begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \end{bmatrix}$							
Controlled Z (CZ)	Controlled Z (CZ) $ Z$ $ Z$ $ Z$ $ Z$									
SWAP			$\begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$							
Toffoli (CCNOT, CCX, TOFF)			$\begin{bmatrix} 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 \end{bmatrix}$							
$N_f =$	4									
$H_{4} = J_{1234} \chi_{1} \chi_{2} \chi_{3} \chi_{4}$ $\chi_{1} = X \mathbb{I}, \chi_{2} = Y \mathbb{I}, \chi_{3} = ZX, \chi_{4} = ZY$ $H_{4} = J_{1234}(X \mathbb{I}). (Y \mathbb{I}). (ZX). (ZY) = -J_{1234} ZZ$ $e^{-iH_{4}\delta t} \equiv \boxed{R_{z}(-2J_{1234}\delta t)}$										
	Pauli-X (X) Pauli-Y (Y) Pauli-Z (Z) Hadamard (H) Phase (S, P) $\pi/8$ (T) Controlled Not (CNOT, CX) Controlled Z (CZ) SWAP Toffoli (CCNOT, CCX, TOFF) $N_f =$ $H_4 = J_{1234} \chi$ $= X \mathbb{I}, \chi_2 = Y \mathbb{I}, \chi_3$ $M_4 = J_{1234} \chi$	Pauli-X (X) $-X$ Pauli-Y (Y) $-Y$ Pauli-Z (Z) $-Z$ Hadamard (H) $-H$ Phase (S, P) $-S$ $\pi/8$ (T) $-T$ Controlled Not (CNOT, CX) Controlled Z (CZ) $-Z$ SWAP $-X$ Toffoli (CCNOT, CCX, TOFF) $+$ $N_f = 4$ $H_4 = J_{1234} \chi_1 \chi_2 \chi_3$ $= XII, \chi_2 = YII, \chi_3 = ZX$ $M_34 (XII). (YII). (ZX). (ZY)$	Pauli-X (X) $-X$ $+$ Pauli-Y (Y) $-Y$ Pauli-Z (Z) $-Z$ Hadamard (H) $-H$ Phase (S, P) $-S$ $\pi/8$ (T) $-T$ Controlled Not (CNOT, CX) $+$ Controlled Z (CZ) $+Z$ SWAP $-X$ $+$ Toffoli (CCNOT, CCX, TOFF) $+$ $N_f = 4$ $H_4 = J_{1234} \chi_1 \chi_2 \chi_3 \chi_4$ $= XI, \chi_2 = YI, \chi_3 = ZX, \chi_4 = XI, \chi_4 = XI, \chi_4 = XI, \chi_5 = YI, \chi_5 = ZX, \chi_4 = XI, \chi_5 = $	Pauli-X (X) $-\overline{X}$ \oplus $\begin{bmatrix} 0 & 1 \\ 0 & 1 \end{bmatrix}$ Pauli-Y (Y) $-\overline{Y}$ $\begin{bmatrix} 0 & -1 \\ 0 & -1 \end{bmatrix}$ Pauli-Z (Z) $-\overline{Z}$ $\begin{bmatrix} 0 & -1 \\ 0 & -1 \end{bmatrix}$ Hadamard (H) $-\overline{H}$ $\frac{1}{\sqrt{2}}\begin{bmatrix} 1 & -1 \\ 0 & 0 & 0 \end{bmatrix}$ $\pi/8$ (T) $-\overline{T}$ $\begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 1 & 0 \end{bmatrix}$ Controlled Not $\begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 1 & 0 \end{bmatrix}$ Controlled Z (CZ) \overline{Z} \overline{Z} $\begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & -1 \end{bmatrix}$ SWAP $-\overline{X}$ $\begin{bmatrix} 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & -1 \end{bmatrix}$ SWAP \overline{X} $\begin{bmatrix} 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & -1 \end{bmatrix}$ Toffoli CCCNOT, CX, TOFF) $\begin{bmatrix} 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & -1 \end{bmatrix}$ $N_f = 4$ $H_4 = J_{1234} \chi_1 \chi_2 \chi_3 \chi_4$ $= X \mathbb{I}, \chi_2 = Y \mathbb{I}, \chi_3 = ZX, \chi_4 = ZY$ $_{34}(X \mathbb{I}). (Y \mathbb{I}). (ZX). (ZY) = -J_{1234} ZZ$						

IBM processors

- We use eagle_r3 processor from IBM
- Basis gates: ECR, ID,RZ, SX, X

 $ECR \equiv \frac{1}{\sqrt{2}} \begin{pmatrix} 0 & 0 & 1 & -i \\ 0 & 0 & -i & 1 \\ 1 & i & 0 & 0 \\ i & 1 & 0 & 0 \end{pmatrix}$

- Fixed chip topology requires extra SWAP gates
- Gate application times are short

Error Mitigation Recipe (Return Probability)

- M3 protocol- For readout errors
- Dynamical decoupling- For decoherence errors
- Pauli Twirling- For converting coherent errors to incoherent/ stochastic errors, described by the depolarizing channel
- Mitigation Circuits/ Self-Mitigation- For depolarizing noise

Papers: 2108.12518, 2207.03670

Image: https://aws.amazon.com/blogs/quantum-computing/suppressing-errors-with-dynamical-decoupling-using-pulse-control-on-amazon-braket/

Pauli Twirling with ECR gates

- 16 single-qubit conjugations leave the ECR gate invariant
- `Twirl' each ECR gate using a randomly chosen conjugation
- Usual approach- 1 physics circuit with N_s shots
- Instead, do *n* randomly twirled physics circuits with $\frac{N_s}{n}$ shots
- Each circuit has a different trajectory to the same final state in the absence of noise

Coherent Noise→Stochastic Noise

$$\mathcal{E}(\rho) = (1-p)\rho + \frac{p}{2}\mathbb{I}$$

$\left[\right]$	P_1	1	X	X	1	Y	Z	Z	Y	Ζ	Y	1	1	Y	Ζ	X	X
	P_2	1	1	Ζ	\mathbf{Z}	X	X	Y	Y	1	1	X	Y	Ζ	Ζ	Y	X
	P_3	1	X	X	1	Y	Ζ	Ζ	Y	Y	Z	X	X	Ζ	Y	1	1
	P_4	1	1	\mathbf{Z}	\mathbf{Z}	X	X	Y	Y	\mathbf{Z}	\mathbf{Z}	Y	X	1	1	X	Y

Depolarizing Error

- Good noise model for stochastic noise is the depolarizing quantum channel $\mathcal{E}(\rho) = (1-p)\rho + \frac{p}{2}\mathbb{I}$
- Given error probability p we can reconstruct noiseless expectation value of

$$\mathcal{O} = \sum_j c_j \prod_i \sigma_i^j = c_0 \mathbb{I} + \mathcal{O}'$$

• Noisy expectation value

$$\overline{\langle \mathcal{O} \rangle} = Tr(\mathcal{E}(\rho)\mathcal{O}) = (1-p)\langle \mathcal{O} \rangle + \frac{p}{2^N}Tr(\mathcal{O})$$

• We can extract the noiseless expectation value

$$\langle \mathcal{O} \rangle = \frac{\overline{\langle \mathcal{O} \rangle} - c_0 p}{(1-p)}$$

How do you estimate *p*?

Mitigation Circuits

Broad idea: Construct mitigation circuits with a known outcome that have a similar structure to the physics circuit

Papers: 2205.09247, 2103.08591

OTOC local protocol

- We use a randomized local protocol to compute OTOC
- Compute OTOC through statistical correlations of observables measured on random states sampled from a distribution

 $O(t) \sim Tr\left(W(t)V^{\dagger}(0)W(t)V(0)\right)$

$$O(t) \sim \frac{\overline{\langle W_i(t) \rangle_{u,k_0}} \left(V_j^{\dagger} W_i(t) V_j \right)_{u,k_0}}{\overline{\langle W_i(t) \rangle_{u,k_0}^2}}$$

- Replace the trace with an average over random states
- Resilient to depolarizing noise! Why? Average over random states, ratio of observables

quantum Variational Quantum Thermalizer (qVQT)

$$\rho_{VQC1} = \left(\sum_{i} a_{i}(\vec{\phi})|b_{i}\rangle\right) \left(\sum_{j} a_{j}^{*}(\vec{\phi})\langle b_{j}|\right)$$

$$\rho_{mm} = \sum_{i} |a_{i}(\vec{\phi})|^{2} |b_{i}\rangle\langle b_{i}| \qquad S = \sum_{i} |a_{i}(\vec{\phi})|^{2} \log|a_{i}(\vec{\phi})|^{2}$$

$$\rho_{VQC2} = \sum_{i} |a_{i}(\vec{\phi})|^{2} |\psi_{i}(\vec{\theta})\rangle\langle\psi_{i}(\vec{\theta})|$$

$$E = \langle H \rangle = Tr(\rho_{VQC2}H) = \sum_{i} |a_{i}(\vec{\phi})|^{2} \langle\psi_{i}(\vec{\theta})|H|\psi_{i}(\vec{\theta})\rangle$$

$$F = E - TS$$
Minimize the Free Energy over $\left(\vec{\phi}, \vec{\theta}\right)$

