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Quantum Computing- What? and 
Why?

22

P NP BQP QMA

Image: https://en.wikipedia.org/wiki/Quantum_complexity_theory, https://en.wikipedia.org/wiki/Bloch_sphere 

• Quantum computers use qubits to represent states

• An 𝑁 qubit state lives in a 2𝑁 dimensional Hilbert space; 

measurement “collapses” it to one basis state

• “Quantum Advantage” due to superposition + entanglement

• Need to track 2𝑁 complex numbers, classically

• Becomes hard to do for ~𝒪(100) qubits

https://en.wikipedia.org/wiki/Quantum_complexity_theory
https://en.wikipedia.org/wiki/Bloch_sphere
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• Quantum computers use qubits to represent states

• An 𝑁 qubit state lives in a 2𝑁 dimensional Hilbert space; 

measurement “collapses” it to one basis state

• “Quantum Advantage” due to superposition + entanglement

• Need to track 2𝑁 complex numbers, classically

• Becomes hard to do for ~𝒪(100) qubits

Are there any interesting HEP problems here?

https://en.wikipedia.org/wiki/Quantum_complexity_theory
https://en.wikipedia.org/wiki/Bloch_sphere


Scattering and Dynamics
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• Lattice methods are valuable for computing static 

observables in field theories even in strong coupling

• Dynamical observables like scattering amplitudes are 

harder to measure

• Requires 3 ingredients
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Focus of  this talk for SYK model

Ingredient 0: Writing down digitized Hamiltonian



Sachdev-Ye-Kitaev (SYK) model

• SYK is a (0+1)D quantum mechanical model of  𝑁𝑓 Majorana fermions 𝜒𝑖 , 𝜒𝑗 = 𝛿𝑖,𝑗

                                     𝐻 =
1

4!
σ𝑖,𝑗,𝑘,𝑙 𝐽𝑖𝑗𝑘𝑙 𝜒𝑖𝜒𝑗𝜒𝑘𝜒𝑙                             𝜎 =

3!𝐽2

𝑁𝑓
3

• Time reversal symmetry 𝒯𝜒𝑎𝒯−1 = 𝜒𝑎; Fermion  number (mod 2) operator symmetry

• 𝑁𝑓 → ∞, 𝛽𝐽 ≫ 1, the model develops and approximate conformal symmetry (time reparametrization)

• It is a chaotic system for 𝑁𝑓 > 4

• Has been used as a mean field model for non-Fermi liquids

• This is related to near 𝐴𝑑𝑆2 gravity and eternal blackholes via holography!

4

Papers: 1503.01409, 1908.11351, 2205.14081

Image: https://arxiv.org/abs/hep-th/0106112

Goal: Do 𝑒−𝑖𝐻𝑡 for SYK model

https://arxiv.org/abs/hep-th/0106112
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Scrambling and OTOCs

• Chaos in quantum mechanical systems can be quantified by the Out-of-Time-Ordered Correlator 

(OTOC)

𝑂 𝑡 = − 𝑊 𝑡 , 𝑉 0 † 𝑊 𝑡 , 𝑉 0 = 2 1 − 𝑊† 𝑡 𝑉† 0 𝑊 𝑡 𝑉 0

• The OTOC grows as 𝑒𝜆𝐿𝑡 when 𝑡𝑑 < 𝑡 < 𝑡∗ for chaotic systems, and saturates beyond

• Chaos bound conjecture: 𝜆𝐿 ≤
2𝜋𝑘𝐵𝑇

ℏ
 for quantum mechanical systems at finite temperature 𝑇

• This is saturated by blackholes, which have a temperature 𝑇𝐻 =
ℏ𝑐3

8𝜋𝐺𝑀𝑘𝐵

• The low-temperature, large 𝑁𝑓 SYK model also saturates this bound, making it interesting to study

5

Scrambling: The quantum information stored between a small number 

of  d.o.f ’s gets spread to an exponentially large number of  d.o.f ’s

Paper: 1503.01409



Trotter evolution
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Effective trotter parameter for SYK is 𝜎 𝛿𝑡~𝐽𝛿𝑡/𝑁𝑓
3/2

. So, we take 𝛿𝑡~𝒪(1)

2-qubit gate Complexity Work

𝒪(𝑁10𝑡2/𝜖) 1607.08560 (2016)

𝒪(𝑁8𝑡2/𝜖) 2008.02303 (2020)

𝒪(𝑁5𝑡2/𝜖) 2311.17991 (2023)

This work

𝑵𝒇 Pauli Strings Clusters 2-qubit gates

4 1 1 2

6 15 5 30

8 70 6 110

10 210 23 498

12 495 57 1504

14 1001 92 3560

16 1820 116 6812

18 3060 175 11962

20 4845 246 19984

• Gate costs can be reduced  by grouping  Pauli terms into commuting clusters

• Then exponentiate each piece and diagonalize them simultaneously

𝑒−𝑖𝐻𝑡 = 𝑒−𝑖𝐻𝑟𝛿𝑡 ≈ ෑ

𝑖

𝑒−𝑖𝐻𝑖𝛿𝑡

𝑟

𝐻 = ෍

𝑖

𝐻𝑖 𝐻𝑖 , 𝐻𝑗 ≠ 0     for     𝑖 ≠ 𝑗

𝐻𝑖 = ෍

𝑗

𝛼𝑗 ෑ

𝑘

𝜎𝑘
𝑗 ς𝑘 𝜎𝑘

𝑗
, ς𝑙 𝜎𝑙

𝑚 = 0 ∀ 𝑚, 𝑗  

Paper: https://dl.acm.org/doi/10.1145/359094.359101

Paper: 2305.11847

https://dl.acm.org/doi/10.1145/359094.359101


Return Probability

7

Eagle_r3
Eagle_r3

𝑁𝑓 = 6 (3 qubits) 𝑁𝑓 = 8 (4 qubits)



OTOC (𝑁𝑓 = 6)

8

Eagle_r3



Conclusions and Outlook

9

• The SYK model is a simple fermionic model that is interesting for 

• Holography

• Chaos

• We studied the SYK model on quantum computers and propose an improved scaling of  𝒪(𝑁5𝑡2/𝜖) 

using graph-coloring techniques

• We did hardware simulation of  small systems of  size 𝑁𝑓 = 6, 8 and used error mitigation techniques

• We see great agreement with exact evolution for both the return probability and the OTOC

•  Non-trotter-based approaches such as variational methods and Cartan tricks can also be explored

• Ongoing work: Studying finite-temperature Gibbs state preparation for the SYK model



Thermal Gibbs States- simulator results 

10

2405.XXXX with Jack Araz, Raghav Jha, Felix Ringer

Preliminary results



Thank You
bsambasi@syr.edu

2311.17991 (PRD, 1 May 2024), 2405.XXXX

https://zenodo.org/records/10202045

mailto:bsambasi@syr.edu
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𝐿 = dim(𝐻)

Features of  SYK

• Diagnose chaos by looking at nearest neighbor energy level spacings 𝑠

• Integrable: Follows 𝑒−𝑠

• Chaotic: Follow GUE, GOE, or GSE depending on symmetries. All 3 realizable 
in SYK!

• The spectral form factor has interesting features at characteristic time scales

𝑆 𝑡 =
𝑍 𝑖𝑡 𝑍 −𝑖𝑡

𝑍 0 2

• In this work, we compute the return probability

𝑝0 = 𝜓0 𝑒−𝑖𝐻𝑡 𝜓0
2

• In the semi-classical regime, they have the same features

𝜓0 𝑒−𝑖𝐻𝑡 𝜓0
2

𝐺𝑈𝐸
= ∫ 𝑑𝐻 𝑒−

𝐿
2

𝑇𝑟 𝐻2

𝜓0 𝑒−𝑖𝐻𝑡 𝜓0
2

=
1

𝐿 𝐿 + 1
( 𝑆 𝑡 𝐺𝑈𝐸 + 𝐿)

5

𝑵𝒇𝒎𝒐𝒅 𝟖 Ensemble

2 or 6 GUE

0 GOE

4 GSE
Paper: 1902.02025



Digitization

• 𝑁𝑓 Majorana fermions requires 
𝑁𝑓

2
 qubits using the 

Jordan-Wigner mapping to Pauli Strings

• The number of  Pauli strings is then 
𝑁𝑓

4
 and grows 

like ~𝑁𝑞

8

𝜒2𝑘−1 =
1

2
ෑ

𝑗=1

𝑘−1

𝑍𝑗 𝑋𝑘𝕝⨂(𝑁−2𝑘)/2 𝜒2𝑘 =
1

2
ෑ

𝑗=1

𝑘−1

𝑍𝑗 𝑌𝑘𝕝⨂(𝑁−2𝑘)/2

Jordan-Wigner mapping

𝐻4 = 𝐽1234 𝜒1𝜒2𝜒3𝜒4

𝜒1 = 𝑋𝕝, 𝜒2 = 𝑌𝕝, 𝜒3 = 𝑍𝑋, 𝜒4 = 𝑍𝑌

𝐻4 = 𝐽1234 𝑋𝕝 . 𝑌𝕝 . 𝑍𝑋 . 𝑍𝑌 = −𝐽1234𝑍𝑍

𝑁𝑓 = 4

𝑒−𝑖𝐻4𝛿𝑡 ≡



IBM processors

• We use eagle_r3 processor from IBM

• Basis gates: ECR, ID,RZ, SX, X

𝐸𝐶𝑅 ≡
1

2

0 0 1 −𝑖
0 0 −𝑖 1
1 𝑖 0 0
𝑖 1 0 0

• Fixed chip topology requires extra SWAP gates

• Gate application times are short



Error Mitigation Recipe (Return Probability)

• M3 protocol- For readout errors

• Dynamical decoupling- For decoherence errors

• Pauli Twirling- For converting coherent errors to incoherent/ 

stochastic errors, described by the depolarizing channel

• Mitigation Circuits/ Self-Mitigation- For depolarizing noise

Papers: 2108.12518, 2207.03670

Image: https://aws.amazon.com/blogs/quantum-computing/suppressing-errors-with-dynamical-decoupling-using-pulse-control-on-amazon-braket/

https://aws.amazon.com/blogs/quantum-computing/suppressing-errors-with-dynamical-decoupling-using-pulse-control-on-amazon-braket/


Pauli Twirling with ECR gates

•  16 single-qubit conjugations leave the ECR gate invariant

• `Twirl’ each ECR gate using a randomly chosen 

conjugation

• Usual approach- 1 physics circuit with 𝑁𝑠 shots

• Instead, do 𝑛 randomly twirled physics circuits with 
𝑁𝑠

𝑛
 

shots

• Each circuit has a different trajectory to the same final state 

in the absence of  noise

Coherent Noise⟶Stochastic Noise

ℰ 𝜌 = 1 − 𝑝 𝜌 +
𝑝

2
𝕀

Papers: 1512.01098



Depolarizing Error

• Good noise model for stochastic noise is the depolarizing quantum channel

ℰ 𝜌 = 1 − 𝑝 𝜌 +
𝑝

2
𝕀

• Given error probability 𝑝 we can reconstruct noiseless expectation value of

𝒪 = ෍

𝑗

𝑐𝑗 ෑ

𝑖

𝜎𝑖
𝑗

= 𝑐0𝕀 + 𝒪′

• Noisy expectation value

⟨𝒪⟩ = 𝑇𝑟 ℰ 𝜌 𝒪 = 1 − 𝑝 𝒪 +
𝑝

2𝑁
𝑇𝑟(𝒪)

• We can extract the noiseless expectation value

𝒪 =
⟨𝒪⟩ − 𝑐0𝑝

(1 − 𝑝)

How do you estimate 𝑝?

Papers: 2103.08591

Image: https://www.researchgate.net/publication/326638661_An_Invitation_to_Quantum_Channels

https://www.researchgate.net/publication/326638661_An_Invitation_to_Quantum_Channels


Mitigation Circuits

Broad idea: Construct mitigation circuits with a known outcome that have a 

similar structure to the physics circuit 

𝑝 = 1 − 𝑝|0⟩

Physics circuit Mitigation circuit

|0⟩

|0⟩

|0⟩

|0⟩

|0⟩

|0⟩

|0⟩

|0⟩

|0⟩

|0⟩

|0⟩

|0⟩

෡𝑈𝛿𝑡
෡𝑈𝛿𝑡

|0⟩

|0⟩

|0⟩

෡𝑈𝛿𝑡
෡𝑈−𝛿𝑡

|0⟩

|0⟩

|0⟩

Self-mitigationCNOT-only mitigation
Papers: 2205.09247, 2103.08591



OTOC local protocol

24

• We use a randomized local protocol to compute OTOC

• Compute OTOC through statistical correlations of  observables 

measured on random states sampled from a distribution

𝑂 𝑡 ~𝑇𝑟 𝑊 𝑡 𝑉† 0 𝑊 𝑡 𝑉 0

• Replace the trace with an average over random states

• Resilient to depolarizing noise! Why? Average over random 

states, ratio of  observables

𝑂 𝑡 ~

𝑊𝑖 𝑡 𝑢,𝑘0
𝑉𝑗

†𝑊𝑖 𝑡 𝑉𝑗
𝑢,𝑘0

𝑊𝑖 𝑡 𝑢,𝑘0

2

Paper: 1807.09087



quantum Variational Quantum Thermalizer 
(qVQT)

paper: https://arxiv.org/pdf/2208.07621

𝜌𝑉𝑄𝐶1 = ෍

𝑖

𝑎𝑖(𝜙)|𝑏𝑖⟩ ෍

𝑗

𝑎𝑗
∗ 𝜙 𝑏𝑗

𝜌𝑚𝑚 = ෍

𝑖

𝑎𝑖 𝜙
2

|𝑏𝑖⟩⟨𝑏𝑖| 𝑆 = ෍

𝑖

𝑎𝑖 𝜙
2

log 𝑎𝑖 𝜙
2

𝜌𝑉𝑄𝐶2 = ෍

𝑖

𝑎𝑖 𝜙
2

𝜓𝑖
Ԧ𝜃 𝜓𝑖

Ԧ𝜃

𝐸 = 𝐻 = 𝑇𝑟 𝜌𝑉𝑄𝐶2𝐻 = ෍

𝑖

𝑎𝑖 𝜙
2

⟨𝜓𝑖
Ԧ𝜃 𝐻 𝜓𝑖

Ԧ𝜃 ⟩

Minimize the Free Energy over 𝜙, Ԧ𝜃

𝐹 = 𝐸 − 𝑇𝑆
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