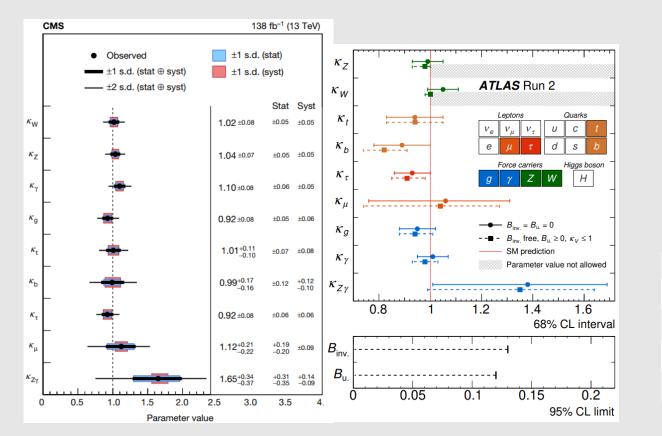


Searching $W \rightarrow \ell \ell \ell \nu$ decay channel at LHC

Peiran Li (University of Minnesota)


In collaboration with Yifan Fei (Fudan University),

Zhen Liu, Kunfeng Lyu and Maxim Pospelov (University of Minnesota)

Electroweak boson measurement

- Higgs Discovery: $h \rightarrow \gamma \gamma, h \rightarrow b\overline{b}$, $h \rightarrow \ell \ell \ell \ell$, ...
- Precision measurement

HDECA	YMODES		
Mode		Fraction (Γ_i / Γ)	
Γ_1	WW^*	$(25.7 \pm 2.5)\%$	
Γ_2	ZZ^*	$(2.80 \pm 0.30)\%$	
Γ_3	$\gamma\gamma$	$(2.50\pm0.20) imes10$	-3
Γ_4	$b\overline{b}$	$(53\pm8)\%$	
Γ_5	e^+e^-	$< 3.6 imes 10^{-4}$	
Γ_6	$\mu^+\mu^-$	$(2.6 \pm 1.3) imes 10^{-4}$	
Γ_7	$ au^+ au^-$	$(6.0^{+0.8}_{-0.7})\%$	
Γ_8	$Z\gamma$	$(3.2\pm 1.5) imes 10^{-3}$	
Γ_9	Z ho(770)	< 1.21%	
Γ_{10}	$Z\phi(1020)$	$< 3.6 imes 10^{-3}$	
Γ_{11}	$Z\eta_c$		
Γ_{12}	ZJ/ψ		
Γ_{13}	$J/\psi\gamma$	$< 3.5 imes 10^{-4}$	
Γ ₁₄	$J/\psi J/\psi$	$< 1.8 imes 10^{-3}$	
•			
Γ_{22}	eμ	LF	$< 6.1 imes 10^{-5}$
Γ_{23}	eτ	LF	$< 2.2 imes 10^{-3}$
Γ_{24}	μau	LF	$< 1.5 imes 10^{-3}$
Γ_{25}	invisible		< 13%
Γ_{26}	$\gamma ext{ invisible}$		< 2.9%
	26 Higgs decay channels		

Z boson also has been well studied from LEP, LHC, etc.

$Z \, \mathrm{DECAY} \, \mathrm{MODES}$

Mode		Fra	uction (Γ_i / Γ)	
Γ_1	e^+e^-	[1]	$(3.3632\pm0.0042)\%$	
Γ_2	$\mu^+\mu^-$	[1]	$(3.3662\pm 0.0066)\%$	
Γ_3	$ au^+ au^-$	[1]	$(3.3696\pm0.0083)\%$	
Γ_4	$\ell^+\ell^-$	[2][1	$(3.3658\pm 0.0023)\%$	
Γ_5	$\mu^+\mu^-\mu^+\mu^-$			
Γ_6	$\ell^+\ell^-\ell^+\ell^-$	[3]	$(4.55\pm0.17) imes10^{-6}$	
Γ_7	invisible	[1]	$(20.000\pm 0.055)\%$	
Γ_8	hadrons	[1]	$(69.911\pm 0.056)\%$	
Γ_9	$(u \overline{u} + c \overline{c})/2$		$(11.6 \pm 0.6)\%$	
Γ_{10}	$(d\ \overline{d} + s\ \overline{s} + b\ \overline{b})/3$		$(15.6 \pm 0.4)\%$	
Γ_{11}	<i>c c</i>		$(12.03\pm 0.21)\%$	
Γ_{12}	$b \ \overline{b}$		$(15.12\pm 0.05)\%$	
Γ_{13}	$b\overline{b}b\overline{b}$		$(3.6 \pm 1.3) imes 10^{-4}$	
Γ ₁₄	<i>999</i>		< 1.1%	
Γ_{15}	$\pi^0\gamma$		$< 2.01 imes 10^{-5}$	
Γ_{16}	$\eta\gamma$		$< 5.1 imes 10^{-5}$	
:				
Γ_{65}	$e^{\pm} au^{\mp}$		LF [4]	$< 5.0 imes 10^{-6}$
Γ_{66}	$\mu^{\pm} au^{\mp}$		LF ^[4]	$< 6.5 imes 10^{-6}$
Γ_{67}	pe		B, L	$< 1.8 imes 10^{-6}$
Γ_{68}	$p\mu$		<i>B</i> , <i>L</i>	$< 1.8 imes 10^{-6}$

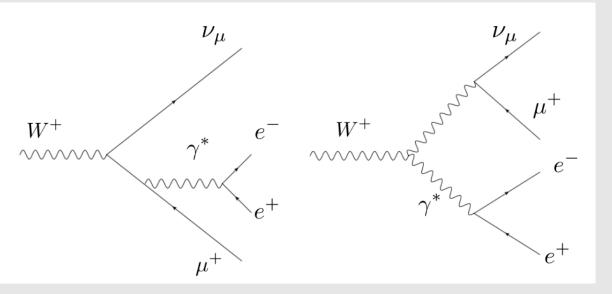
68 Z boson decay channels has been studied.

W boson measurement

W^+ decay modes

 W^- modes are charge conjugates of the modes below.

Mode		Fro	action (Γ_i / Γ)
Γ_1	$\ell^+ u$	[1]	$(10.86 \pm 0.09)\%$
Γ_2	$e^+ u$		$(10.71\pm 0.16)\%$
Γ_3	$\mu^+ u$		$(10.63 \pm 0.15)\%$
Γ_4	$ au^+ u$		$(11.38\pm 0.21)\%$
Γ_5	hadrons		$(67.41 \pm 0.27)\%$
Γ_6	$\pi^+\gamma$		$< 7 imes 10^{-6}$
Γ_7	$D_s^+\gamma$		$< 1.3 imes 10^{-3}$
Γ_8	с Х		$(33.3\pm2.6)\%$
Γ_9	$c\overline{s}$		$(31^{+13}_{-11})\%$
Γ_{10}	invisible	[2]	$(1.4\pm2.9)\%$
Γ_{11}	$\pi^+\pi^+\pi^-$		$< 1.01 imes 10^{-6}$


11 channels...

Total cross section at 13 TeV pp collision

- Z boson: 58 nb for single Z boson production
 - Number of single Z boson for LHC run-2: ~8 billions
- W boson: 190 nb for single W boson production
 - Number of single W boson for LHC run-2: ~27 billions

Maybe we can look into W boson more. As a first example, we propose to study the W exotic decay into $3\ell + \nu$.

$W \rightarrow \ell \ell \ell \nu$ precision measurement at LHC

Signal process	cross section [pb]		
$pp \to \ell^+ \ell^- \ell^+ \nu_\ell + (j), \ M_{\ell\ell\ell\nu} \in OR$	0.36		
$pp \to \ell^+ \ell^- \ell^- \bar{\nu}_\ell + (j), \ M_{\ell\ell\ell\nu} \in OR$	0.25		

On-shell Region (OR) defined as: $m_W \pm 2\Gamma_W$

With parton level pre-selection

 $p_T(j) > 20 \text{ GeV}, \ p_T(\ell) > 3 \text{ GeV}, \ \eta(\ell) < 5.0(2.5),$ $\eta(j) < 5.0, \ \Delta R(\ell \ell) > 0.2, \ M_{\ell \ell} > 1 \text{ GeV},$

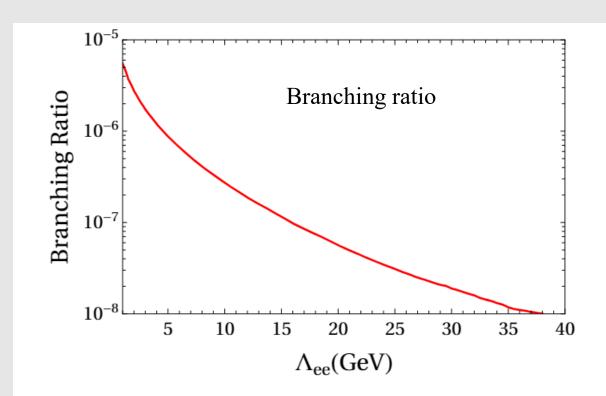
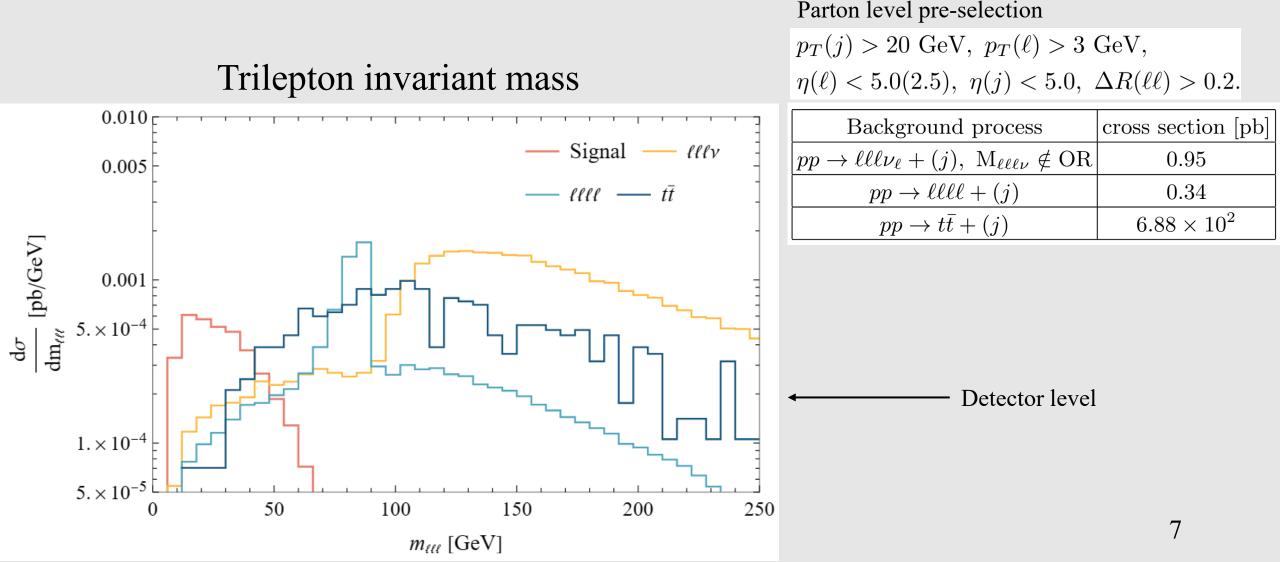



FIG. 2. The branching ratio of the decay channel $W^+ \rightarrow \mu^+ \nu_\mu e^+ e^-$ as the function of the electron pair invariant mass M_{ee} thresh-hold value.

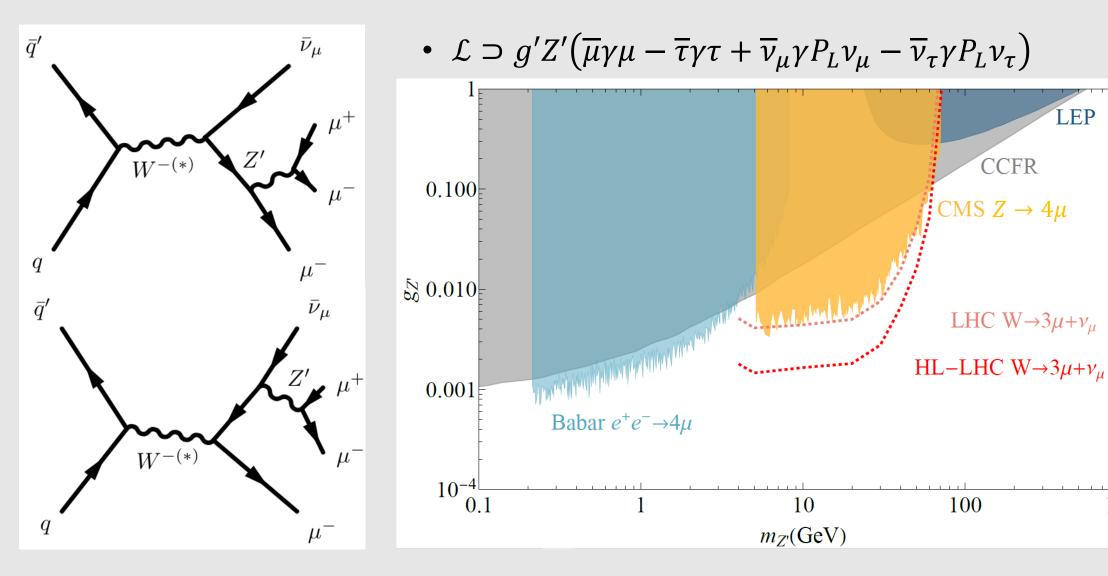
6

SM background

Projective sensitivity

Detector level cuts

Cross-section [pb]	Parton-level $n(\ell) = l$	$n(\ell) = 3$	$n(j) \leq 2,$	$M_{\ell\ell\ell} < 80~GeV$	Cut-based result	ML result
		n(c) = 0	$M_{\ell\ell}>4~GeV$		$M_{\ell\ell\ell} < 60~GeV$	DNN selection
Signal	0.61(100%)	0.036(5.9%)	0.021(3.5%)	0.021(3.5%)	0.021(3.4%)	0.017(2.7%)
$pp \to \ell \ell \ell \nu, \ \mathcal{M}_{\ell \ell \ell \nu} \notin \mathcal{OR}$	0.95(100%)	0.22(23%)	0.2(21%)	0.013(1.4%)	$8 imes 10^{-3} (0.87\%)$	$3.3 imes 10^{-3}(0.3\%)$
$pp ightarrow \ell \ell \ell \ell \ell$	0.34(100%)	0.068(20%)	0.061(18%)	0.017(5%)	$7.2 imes 10^{-3} (2.1\%)$	$3.2 \times 10^{-3} (0.95\%)$
$pp \rightarrow t\bar{t} + (j)$	688(100%)	0.19(0.027%)	0.11(0.016%)	$0.023(3 \times 10^{-5})$	$0.01(1 imes 10^{-5})$	$2.1 \times 10^{-3} (3 \times 10^{-6})$

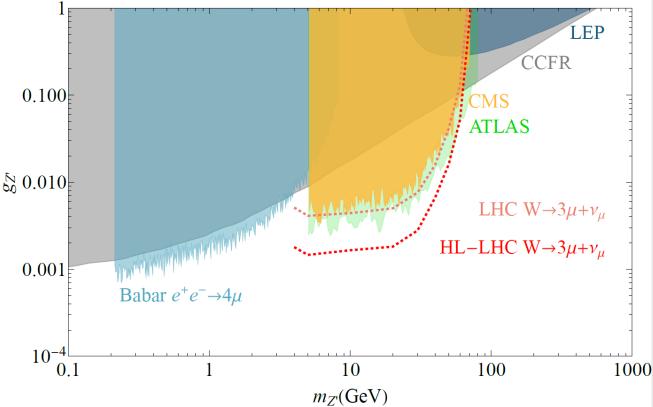

The Br of $W \to \ell \ell \ell \nu$ is at 10^{-6} level.

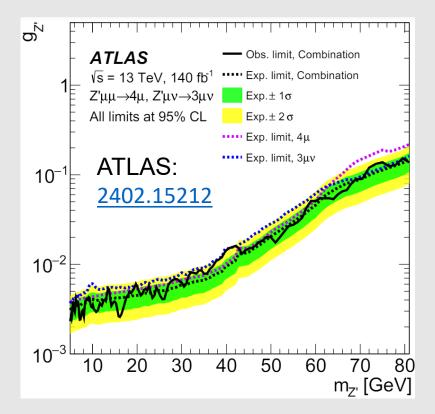
Current LHC (with current trigger and selection) $\frac{\delta Br}{Br}(W \rightarrow 3\ell + \nu) = 4.4\%$

HL-LHC (with improved trigger on multileptons)

$$\frac{\delta Br}{Br}(W \to 3\ell + \nu) = 0.6\%$$

Constrain on $L_{\mu} - L_{\tau}$ model


1000


LEP

CCFR

However, ATLAS just explored this BSM study 3 month ago.

- Our results are compatible
- But the SM value was never extracted.
- More new physics:
 - Anomalous Z'
 - SMEFT
 - Flavor universality

Conclusion

- There are still some channels that we can but haven't discovered at LHC.
- $W \rightarrow 3\ell + \nu$ can be measured to a precision of 4%.
- Can also be exploited to search on BSM models.

Thank you

Backup

Precision

• HL-LHC

- Extend rapidity coverage: $\eta(e, j) < 5, \eta(\mu) < 2.8$
- High luminosity: $L = 3000 \text{ fb}^{-1}$
- Better resolution and reconstructed efficiency at low p_T

 $\frac{\delta \mathrm{Br}^{\mathrm{fid}}(W \to \ell \ell \ell \nu_{\ell})}{\mathrm{Br}^{\mathrm{fid}}(W \to \ell \ell \ell \nu_{\ell})} = 0.62\%$

- Run-2
 - Current status: $\eta(\ell, j) < 2.5$
 - $L = 140 \text{ fb}^{-1}$

$$\frac{\delta \mathrm{Br}^{\mathrm{fid}}(W \to \ell \ell \ell \nu_{\ell})}{\mathrm{Br}^{\mathrm{fid}}(W \to \ell \ell \ell \nu_{\ell})} = 4.4\%$$

How we extract the branching ratio from signal

$$Br^{\text{fid}} = \frac{\sigma_{\text{signal}}^{\text{fid}}}{\sigma_W} \times f_W$$

Signal: $pp \rightarrow lllv$ $(M_{lllv} \in M_W \pm 2\Gamma)$

•
$$f_W = \frac{\sigma_{pp \to W^+ \to lllv}}{\sigma_{pp \to lllv}}$$