Cosmological Probes of Dark Radiation from Neutrino Mixing

Itamar J. Allali

Department of Physics, Brown University

May 14, 2024

Based on IJA, Aloni, Schöneberg 2404.16822

I.J.A. (Brown)

Cosmo Probes of DR

Dark Radiation and the Hubble Tension

2 Dark Radiation from Neutrino Mixing

Dark Radiation and the Hubble Tension

Dark Radiation from Neutrino Mixing

Dark Radiation and the Hubble Tension $_{O \bullet O O}$

Dark Radiation from Neutrino Mixing 00000

Results 000000

ACDM and the Hubble Tension

$\Lambda CDM model$

(from Planck 18 results, Aghanim et al 18)

- 6 free parameters
- Agreement between CMB, BAO, LSS

Dark Radiation and the Hubble Tension $0 \bullet 00$

Dark Radiation from Neutrino Mixing

Results

ACDM and the Hubble Tension

$\Lambda CDM model$

(from Planck 18 results, Aghanim et al 18)

- 6 free parameters
- Agreement between CMB, BAO, LSS

Known tension with some direct measurements of expansion rate H_0 :

(adapted from Di Valentino et al 21)

Dark Radiation and the Hubble Tension $0 \bullet 00$

Dark Radiation from Neutrino Mixing

Results

ACDM and the Hubble Tension

$\Lambda CDM model$

(from Planck 18 results, Aghanim et al 18)

- 6 free parameters
- Agreement between CMB, BAO, LSS

Known tension with some direct measurements of expansion rate H_0 :

(adapted from Di Valentino et al 21)

Dark Radiation and the Hubble Tension $_{\rm OO} \bullet _{\rm O}$

Dark Radiation from Neutrino Mixing

Results 000000

Simple Adjustment: Dark Relativistic Species $\Delta N_{\rm eff}$

Adding dark radiation to ACDM has been considered:

$$\Delta N_{\rm eff} \equiv \rho_{\rm DR} / \rho_{\nu,1} \tag{1}$$

- Free streaming radiation constrained heavily by CMB
- Strongly self-interacting (fluid) a bit less, still constrained**
- Known degeneracy with the value of H_0

(IJA + Notari + Rompineve 2404.15220)

Cosmo Probes of DR

Dark Radiation and the Hubble Tension $_{\text{OO}} \bullet_{\text{O}}$

Dark Radiation from Neutrino Mixing

Results 000000

Simple Adjustment: Dark Relativistic Species $\Delta N_{\rm eff}$

Adding dark radiation to ACDM has been considered:

$$\Delta N_{\rm eff} \equiv \rho_{\rm DR} / \rho_{\nu,1} \tag{1}$$

- Free streaming radiation constrained heavily by CMB
- Strongly self-interacting (fluid) a bit less, still constrained**
- Known degeneracy with the value of H_0
- ** Note updated constraints with DESI BAO

(IJA + Notari + Rompineve 2404.15220)

I.J.A.	(Brown)
--------	---------

Dark Radiation with Mass Threshold (Step)

- Coupled light species, some with a mass m
- Gives rise to a relativistic sector with a step in abundance (Aloni et al 2021)
- Effect of step: high ℓ modes "see" smaller $\Delta N_{\rm eff}$

Dark Radiation with Mass Threshold (Step)

- Coupled light species, some with a mass m
- Gives rise to a relativistic sector with a step in abundance (Aloni et al 2021)
- Effect of step: high ℓ modes "see" smaller $\Delta N_{\rm eff}$

Constraint relaxes further

- ΔN_{eff} < 0.4 (95% C.L.)
- $\bullet \ \rightarrow \Delta \textit{N}_{eff} < 0.55$

2 Dark Radiation from Neutrino Mixing

Neutrino Mixing Model

Consider dark radiation that mixes with standard model neutrinos:

- New component: dark fermion ν_d
 - Nonzero, but small ($\mathcal{O}(eV)$) mass m_{ν_d}
 - Nonzero mixing angle θ_0 with SM neutrinos ν
- New component: dark scalar ϕ
 - Massless $m_{\phi} = 0$
 - Strong self-interactions and with ν_d , coupling α_d

Three microphysical parameters: m_{ν_d} , θ_0 , α_d

Background Evolution

- Begin with unpopulated dark sector
- Oscillations from $\nu \rightarrow \nu_d$ decohere because of strong interactions with ϕ , overall rate:

$$\Gamma_{\nu \to \nu_d} \approx P_{\rm osc}(\nu \to \nu_d) \times \Gamma_{\rm DS} \tag{2}$$

(Aloni et al 23)

Background Evolution

- Begin with unpopulated dark sector
- Oscillations from $\nu \rightarrow \nu_d$ decohere because of strong interactions with ϕ , overall rate:

$$\Gamma_{\nu \to \nu_d} \approx P_{\rm osc}(\nu \to \nu_d) \times \Gamma_{\rm DS} \tag{2}$$

(Aloni et al 23)

• Start to populate DS when $\Gamma/H \sim 1$ until reach thermal equilibrium

Background Evolution

- Begin with unpopulated dark sector
- Oscillations from $\nu \rightarrow \nu_d$ decohere because of strong interactions with ϕ , overall rate:

$$\Gamma_{\nu \to \nu_d} \approx P_{\rm osc}(\nu \to \nu_d) \times \Gamma_{\rm DS} \tag{2}$$

(Aloni et al 23)

- Start to populate DS when $\Gamma/H \sim 1$ until reach thermal equilibrium
- At mass threshold, step occurs AND oscillations/ ν interactions shut off

Dark Radiation and the Hubble Tension

Dark Radiation from Neutrino Mixing

Results

Dynamically Thermalized for wide range of θ_0

• Explains a mechanism for DR production after big bang nucleosvnthesis

Dark Radiation and the Hubble Tension $_{\rm OOOO}$

Dark Radiation from Neutrino Mixing $_{\text{OOOO}}$

Strong vs. Weak Coupling

.J.A. (Brown)

Dark Radiation and the Hubble Tension

2 Dark Radiation from Neutrino Mixing

Dark Radiation from Neutrino Mixing

Markov Chain Monte Carlo

Cosmologies are computed with modified Einstein-boltzmann solver CLASS: (Blas + Lesgourgues + Tram 11) MCMC analysis using MontePython (Audren et al 12, Brinckmann + Lesgourgues 18)

Markov Chain Monte Carlo

Cosmologies are computed with modified Einstein-boltzmann solver CLASS: (Blas + Lesgourgues + Tram 11) MCMC analysis using MontePython (Audren et al 12, Brinckmann + Lesgourgues 18)

Datasets considered:

Baseline: CMB TT, TE, EE, and lensing from *Planck*, BAO from 6DFGS, BOSS, and WiggleZ, and Supernovae from *Pantheon*+ (Aghanim et al 18 | Beutler et al 11, Ross et al 15, Alam et al 17 | Scolnic et al 22)

Markov Chain Monte Carlo

Cosmologies are computed with modified Einstein-boltzmann solver CLASS: (Blas + Lesgourgues + Tram 11) MCMC analysis using MontePython (Audren et al 12, Brinckmann + Lesgourgues 18)

Datasets considered:

- Baseline: CMB TT, TE, EE, and lensing from *Planck*, BAO from 6DFGS, BOSS, and WiggleZ, and Supernovae from *Pantheon*+ (Aghanim et al 18 | Beutler et al 11, Ross et al 15, Alam et al 17 | Scolnic et al 22)
- +SH0ES: SH0ES measurement of instrinsic SNIa mag. (Riess et al 22) (combined consistently with Pantheon)

Dark Radiation and the Hubble Tension

Dark Radiation from Neutrino Mixing

Results

Strong Coupling Regime $\alpha_d \geq 1$

(IJA, Aloni, Schöneberg 24)

(Brown)	Cosmo Probes of DR	May 14, 2024

10 / 13

Dark Radiation from Neutrino Mixing

Results

Strong Coupling Regime $\alpha_d \geq 1$

• Data constrain thermalization to after CMB

(IJA, Aloni, Schöneberg 24)

Dark Radiation from Neutrino Mixing

Results

Strong Coupling Regime $\alpha_d \geq 1$

- Data constrain thermalization to after CMB
- In constrast with previous studies showing preference for ν interactions (e.g. Kreisch et al 19 | Camarena et al 23 | He et al 23)

(IJA, Aloni, Schöneberg 24)

Dark Radiation and the Hubble Tension 0000

Dark Radiation from Neutrino Mixing

Results

Neutrino Anomalies?

(IJA, Aloni, Schöneberg 24)

Dark Radiation and the Hubble Tension $_{\rm OOOO}$

Dark Radiation from Neutrino Mixing

Results 000000

Weak Coupling Limit and the Hubble Tension

I.J.A.

Summary

- Dark Radiation is known to alleviate Hubble tension, even preferred by new data
- DR with mass threshold can do better
- Production after BBN is attractive feature: thermalization via neutrino interactions
- Late thermalization preferred by data, early allowed with early decoupling (strong coupling)
- Provides unique partial thermalization regime preferred by data (weak coupling)

Hubble	Tension
000	

Neutrino Mixing

Results 00000000 SDR Dynamics

H_0 Tension

I.J.A. (Brown)

Cosmo Probes of DR

2 / 21

Neutrino Mixing

Results 00000000 SDR Dynamics

DESI Constraints on DR and H_0 tension

Lowest tension when DR is fluid, and when produced after BBN \rightarrow justifies a combined fit with SH0ES (IJA + Notari + Rompineve 24)

I.J.A. (Brown)

Neutrino Mixing

Results 00000000 SDR Dynamics

Hubble Tension in light of DESI + DR

I.J.A.

(Brown)

Hubble	

Neutrino Mixing

Results 00000000 SDR Dynamics

Low m_{ν_d} Limit

I.A.	(Brown)

Hubble	

Neutrino Mixing

Results 00000000 SDR Dynamics

High m_{ν_d} Limit

Neutrino Mixing

Results 00000000 SDR Dynamics

Boltzmann Equations

$$\frac{\partial f_{\nu}}{\partial \ln a} - p \frac{\partial f_{\nu}}{\partial p} = -\frac{\langle \Gamma_{\text{ph.}} \rangle}{H} (f_{\nu} - f_{\nu d}) , \qquad (3)$$
$$\frac{\partial f_{\nu d}}{\partial f_{\nu d}} = n \frac{\partial f_{\nu d}}{\partial f_{\nu d}} - \frac{g_{\nu}}{g_{\nu}} \frac{\langle \Gamma_{\text{ph.}} \rangle}{(f_{\nu} - f_{\nu})} (f_{\nu} - f_{\nu}) + C \quad (f_{\nu} - f_{\nu}) = 0$$

$$\frac{\partial v_{\nu d}}{\partial \ln a} - p \frac{\partial v_{\nu d}}{\partial p} = \frac{g_{\nu}}{g_{\nu d}} \frac{\langle v_{\mu l, \gamma}}{H} (f_{\nu} - f_{\nu d}) + C_{\nu_d - \phi} [f_{\nu_d}, f_{\phi}] , \quad (4)$$

$$\frac{\partial f_{\phi}}{\partial \ln a} - p \frac{\partial f_{\phi}}{\partial p} = -\frac{g_{\nu d}}{g_{\phi}} C_{\nu_d - \phi}[f_{\nu_d}, f_{\phi}] + C_{\phi^n}[f_{\phi}] , \qquad (5)$$

Neutrino Mixing

Results 00000000 SDR Dynamics

Background Evolution/Thermalization

$$\frac{\partial \ln T_{\nu}}{\partial \ln a} + 1 = -\frac{1}{4} \frac{\langle \Gamma_{\text{ph.}} \rangle}{H} \left[1 - \frac{R_{3,\nu_d}}{R_{3,\nu_d,[T \to T_{\nu}]}} \right] , \qquad (6)$$

$$\frac{\partial \ln T_{\text{DS}}}{\partial \ln a} + \frac{\rho_{\text{DS}} + P_{\text{DS}}}{\rho_{\text{DS}} + R_{0,DS}} = \frac{\rho_{\nu}}{3(\rho_{\text{DS}} + R_{0,DS})} \frac{\langle \Gamma_{\text{ph.}} \rangle}{H} \left[1 - \frac{R_{3,\nu_d}}{R_{3,\nu_d,[T \to T_{\nu}]}} \right]$$

$$(7)$$

$$3R_{n,\xi} \equiv \frac{g_{\xi}}{(2\pi)^3} \int_0^\infty \mathrm{d}^3 p \left[\frac{E^3}{p^2}\right] \left(\frac{p}{E}\right)^n f_{\xi}(E,T) , \qquad (8)$$

.

Hubble	

Neutrino Mixing

Results 00000000 SDR Dynamics

Neutrino Perturbations

Neutrino Mixing

Results 00000000 SDR Dynamics

DS Perturbations

$$\frac{\partial \delta_{\rm DS}}{\partial \tau} + (1 + w_{\rm DS}) \left(\theta_{\rm DS} - 3\dot{\phi}_{CN} \right) + 3\mathcal{H} \left(c_{s,DS}^2 - w_{\rm DS} \right) \delta_{\rm DS} = 4\mathcal{H} \left[\frac{\partial \ln(aT_{\nu})}{\partial \ln a} \frac{\rho_{\nu}}{\rho_{\rm DS}} \right] \delta_{\rm DS} + a \langle \Gamma_{\rm ph.} \rangle \frac{\rho_{\nu}}{\rho_{\rm DS}} \left[\delta_{\nu} - \frac{4\delta_{\rm DS}}{3(1 + w_{R_0,DS})} \right]$$
(12)

$$\frac{\partial \theta_{\rm DS}}{\partial \tau} - k^2 \frac{c_{s,DS}^2}{1 + w_{\rm DS}} \delta_{\rm DS} + \mathcal{H} \left(1 - 3c_{s,DS}^2 \right) \theta_{\rm DS} + k^2 \psi_{CN} = 4\mathcal{H} \left[\frac{\partial \ln(aT_{\nu})}{\partial \ln a} \frac{\rho_{\nu}}{\rho_{\rm DS}} \right] \theta_{\rm DS} + a \langle \Gamma_{\rm ph.} \rangle \left[\frac{4\rho_{\nu}}{3(\rho_{\rm DS} + P_{\rm DS})} \right] (\theta_{\nu} - \theta_{\rm DS})$$
(13)

,

Neutrino Mixing

Results 00000000 SDR Dynamics

Interaction Rate

$$\langle \Gamma_{\rm ph.} \rangle = \frac{\frac{1}{4} \sin^2 2\theta_0 \left(3c_{\Gamma} T_{\nu}^5 G_F^2 + \alpha_d^2 \frac{T_d^2}{T_{\nu}} \right)}{\left(\cos 2\theta_0 + \alpha_d \frac{T_d^2}{m_{\nu d^2}} + 18c_V \frac{G_F^2 T_{\nu}^5}{m_{\nu d}^2} \right)^2 + \sin^2 2\theta_0} \times e^{-m_{\nu d}/T_{\nu}} .$$
(14)

Neutrino Mixing

Results

SDR Dynamics

Strong 3 ν

I.J.A.

Neutrino Mixing

Results 0●000000

SDR Dynamics

Strong 1 ν

I.J.A.

Neutrino Mixing

Results 00●00000

SDR Dynamics

Strong Bimodal

.J.A. (Brown)

Neutrino Mixing

Results 000●0000

SDR Dynamics

Anomaly

.J.A.

(Brown)

Neutrino Mixing

Results 0000●000

SDR Dynamics

Weak 3 ν

I.J.A.

Neutrino Mixing

Results 00000●00

SDR Dynamics

Weak 1 ν

I.J.A.

	Hubble Tension Neut	rino Mixing 0000	Results 000000●0	SDR 1 00	Dynamic
Model		Dataset	Best-fit χ^2	$\Delta \chi^2$	
		baseline	4192.1	0	
	ACDIVI	baseline+SH0ES	4102.3	0	
	• <u>1</u>	baseline	4191.5	-0.6	
	$\alpha_d = 1$, narrow prior	baseline+SH0ES	4102.0	-0.3	
	$\alpha_{d} = 1$, 1ν interaction	baseline	4189.3	-1.8	
	$\alpha_d = 1$, broad prior	baseline	4191.2	-0.9	
	$\alpha_{d} = 1$, IDR limit	baseline	4195.2	+3.1	
	$\alpha_{d} = 1$, multimodal	baseline	4193.1	+1.0	
Anomaly		baseline	4191.8	-0.3	
		baseline+SH0ES	4099.7	-2.6	
narrow prior		baseline	4190.5	-1.6	
		baseline+SH0ES	4091.4	-10.9	
		baseline	4190.3	-1.8	
		baseline+SH0ES	4087.6	-14.7	
	1	baseline	4191.3	-0.8	
	1V Interaction	baseline+SH0ES	4093.4	-8.9	
	I.J.A. (Brown)	Cosmo Probes of DR	May 14,	2024	18 / 2

Hubble Tension	Neutrino Mixing 0000000	Results 0000000●

Model	Dataset	H ₀	$\Omega_m h^2$	ns	$\log_{10}(\theta_0)$	$\log_{10}(\alpha_d)$	$\log_{10}(m_{\nu d}/eV)$
ACDM	baseline	67.84 ± 0.41	0.14232 ± 0.00088	0.9641 ± 0.0037	—	_	_
ACDIVI	+SH0ES	68.81 ± 0.39	0.14059 ± 0.00080	0.9691 ± 0.0037	—	—	—
norrow prior	baseline	67.86 ± 0.41	$0.14246^{+0.00089}_{-0.00092}$	$0.9651^{+0.0040}_{-0.0043}$	< -13	_	Unconstrained
narrow prior	+SH0ES	68.89 ± 0.41	0.14096 ± 0.00098	$0.9722^{+0.0061}_{-0.0056}$	< -13	_	Unconstrained
1ν interaction	baseline	67.90 ± 0.42	0.14254 ± 0.00093	0.9654 ± 0.0043	< -13	_	Unconstrained
broad prior	baseline	67.84 ± 0.41	0.14232 ± 0.00085	0.9641 ± 0.0037	< -11	—	Unconstrained
IDR limit	baseline	69.64 ± 0.44	0.14735 ± 0.00092	0.9559 ± 0.0045	-10.4 ± 1.1	_	$3.01^{+0.64}_{-0.54}$
multimodal	baseline	$69.17^{+0.74}_{-0.89}$	$0.1460^{+0.0019}_{-0.0025}$	0.9566 ± 0.0055	-11.6 ± 1.7	_	> 1.5
Anomaly	baseline	68.15 ± 0.41	0.14293 ± 0.00091	0.9590 ± 0.0059	_	-13.12 ± 0.35	_
Anomaly	+SH0ES	69.14 ± 0.41	0.14146 ± 0.00088	0.9613 ± 0.0074	_	$-13.29^{+0.47}_{-0.44}$	_
norrow prior	baseline	68.19 ± 0.49	0.1434 ± 0.0012	0.9643 ± 0.0062	< -1.2	$-13.3^{+1.2}_{-1.0}$	$0.11^{+0.48}_{-0.59}$
narrow prior	+SH0ES	69.63 ± 0.49	0.1440 ± 0.0015	0.9738 ± 0.0047	< -1.5	$-12.72^{+0.52}_{-0.44}$	$0.60^{+0.14}_{-0.11}$
	baseline	67.90 ± 0.42	0.14244 ± 0.00088	0.9639 ± 0.0038	< -1.3	< -11	Unconstrained
	+SH0ES	70.53 ± 0.41	$0.14653^{+0.00093}_{-0.00095}$	$0.9494^{+0.0050}_{-0.0048}$	< -1.6	-9.84 ± 0.93	1.77 ± 0.13
1. interaction	baseline	68.00 ± 0.46	0.14268 ± 0.00099	0.9633 ± 0.0040	< -2.0	< -9.7	> 0.40
10 interaction	+SH0ES	69.38 ± 0.42	$0.14273^{+0.00100}_{-0.00095}$	0.9619 ± 0.0051	< -1.1	-9.8 ± 1.3	> 0.72

Neutrino Mixing

Results 00000000 SDR Dynamics ●0

SDR Background

$$w(z) \equiv \frac{p(z)}{\rho(z)}, \quad c_s^2(z) \equiv \frac{dp(z)/dz}{d\rho(z)/dz}, \tag{15}$$

$$r_g \equiv \frac{g_*^{z \gg z_t} - g_*^{z \ll z_t}}{g_*^{z \ll z_t}} = \left(\frac{\Delta N_{\text{eff}}^{\text{IR}}}{\Delta N_{\text{eff}}^{\text{UV}}}\right)^3 - 1, \tag{16}$$

$$T_d^{\text{IR,UV}} \simeq 0.5 \left(\frac{2}{g_*^{\text{IR,UV}}}\right)^{\frac{1}{4}} \left(\frac{\Delta N_{\text{eff}}^{\text{IR,UV}}}{0.3}\right)^{\frac{1}{4}} T_{\text{SM}}. \tag{17}$$

Neutrino Mixing

Results 00000000 SDR Dynamics ○●

SDR Perturbations

$$\dot{\delta} = -(1+w)(\theta + \frac{\dot{h}}{2}) - 3\mathcal{H}(c_s^2 - w)\delta \tag{18}$$

$$\dot{\theta} = -\mathcal{H}(1-3w)\theta - \frac{\dot{w}}{1+w}\theta + \frac{c_s^2}{1+w}k^2\delta - k^2\sigma \qquad (19)$$