Baryon Number Violation Involving Tauons

[**JH** & Dima Watkins, to appear]

Julian Heeck

Pheno 2024
University of Pittsburgh & Carnegie Mellon University, Pittsburgh

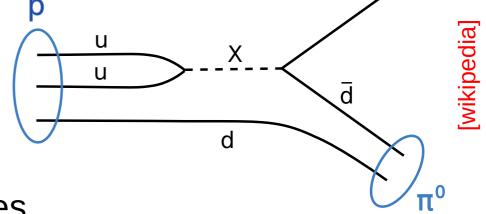
5/14/2024

Why baryon number violation?

Tests prediction/symmetry of Standard Model:

$$\underbrace{\mathsf{U}(1)_\mathsf{B} \times \mathsf{U}(1)_\mathsf{L} \times \mathsf{U}(1)_\mathsf{L_{\mu}-\mathsf{L}_{\tau}} \times \mathsf{U}(1)_\mathsf{L_{\mu}+\mathsf{L}_{\tau}-2\mathsf{L}_{e}}}_{\mathsf{LFV}}.$$

- Testable signatures in many extensions (GUTs, SUSY,...).
- Needed for spontaneous generation of matter asymmetry.


BNV is special: *most sensitive* probe of new physics because it probes decay of stable [sic] matter!

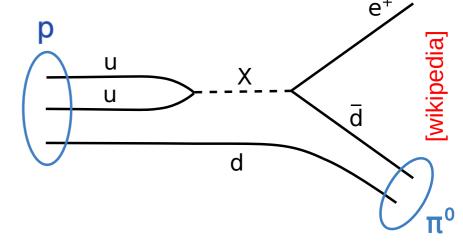
(LNV & LFV have to use unstable particles.)

[Recent review: Perez, Pocar, JH et al., arXiv:2208.00010]

Best example: proton decay

- First suggested in GUTs, predict $\tau_{\rm p} \sim {\rm m_X^4/m_p^5}$.
- Violates $\Delta B = \Delta L = \Delta L_e = 1$.

- All matter contains protons, easy to observe for long times.
- Current best: Super-Kamiokande.
 - 50k ton water tank & 13k PMTs for Cherenkov radiation.
 - Running for two decades, observing 10³⁵ protons:


$$au({
m p}
ightarrow {
m e}^+ \pi^0) > 10^{34} \, {
m yr.} \;\; {
m [Super-K, 2010.16098]}$$

- Implies $m_X > 10^{15} \,\text{GeV}!$

Best example: proton decay

Super-Kamiokande:

$$\tau(\textrm{p}\rightarrow\textrm{e}^{+}\pi^{0})>10^{34}\,\textrm{yr}.$$

$$m_{\textrm{X}}>10^{15}\,\textrm{GeV!}$$

Similarly:

$$au(p o\mu^+\pi^0)\gtrsim 10^{34}\,{
m yr},\quad au(n oar
u_{{
m e},\mu, au}\pi^0)\gtrsim 10^{33}\,{
m yr}.$$
 [Super-K, '13] What about T+?

Tauon heavier than proton:

$${\rm BR}(au o ar{p}\pi^0) < 10^{-5} \; {\rm [CLEO, '99]} \; \Rightarrow m_{\rm X} > 10^3 \, {\rm GeV}.$$

Better: nucleon decay with off-shell tauon. [Marciano, NPB '95]

Explore this quantitatively

$\Delta B = \Delta L_{\tau} = 1$ operators

- d=6 operators: $y^1duQL_{\tau} + y^2QQQL_{\tau} + y^3QQu\tau_R + y^4duu\tau_R$
- All induce $\tau^- \to \bar{p}\pi^0, \bar{p}\eta$.
- But y^1 and y^2 immediately give $n \to \bar{\nu}_\tau \pi^0, \bar{\nu}_\tau \eta$:

$$au(\mathrm{n} o ar{
u}_{ au}\pi^0) \simeq 10^{-8}\,\mathrm{s}\,\left(rac{10^{-5}}{\mathrm{BR}(au o ar{\mathrm{p}}\pi^0)}
ight) \simeq 10^{33}\,\mathrm{yr}\,\left(rac{3 imes 10^{-54}}{\mathrm{BR}(au o ar{\mathrm{p}}\pi^0)}
ight)$$

- Neutron decays into tau neutrinos give far better limits.
- How about y^3 and y^4 ? Right-handed tauons \rightarrow no v_{τ} .
 - Can still go through off-shell tauon: $p \longrightarrow \chi^{\bar{\tau}} / \bar{\nu}_{\tau}$

$$\tau(p\to \pi^+ \bar{\nu}_\tau) \simeq \frac{16\pi (m_p^2 - m_\tau^2)^2}{f_\pi^2 G_F^2 m_p^3 m_\tau^2 \beta^2} \left| y^3 - y^4 \right|^{-2} \simeq 6\,\text{s}\, \left(\frac{10^{-5}}{\text{BR}(\tau\to \bar{p}\pi^0)} \right)$$

[Hou, Nagashima, Soddu, PRD '05]

[see also Crivellin & Hoferichter, PLB '23, for $p \rightarrow \pi^0 e^+ \nu \nu$ etc, which are weaker.]

Pheno '24 Julian Heeck

5

$\Delta B = \Delta L_{\tau} = 1$ operators

- d=6 operators: $y^1duQL_{\tau} + y^2QQQL_{\tau} + y^3QQu\tau_R + y^4duu\tau_R$
- Set $y^1 = y^2 = 0$ and $y^3 = y^4$ to eliminate nucleon decays?
- Chiral perturbation theory: [Claudson, Wise, Hall, '82]

$$\mathbf{y}^{3}\mathbf{Q}\mathbf{Q}\mathbf{u}\tau_{R}=\mathbf{y}^{3}\boldsymbol{\beta}\left[\mathbf{p}\tau_{R}-\frac{\mathrm{i}\pi^{0}}{\sqrt{2}f_{\pi}}\mathbf{p}\tau_{R}-\frac{\mathrm{i}\pi^{+}}{f_{\pi}}\mathbf{n}\tau_{R}+\frac{\mathrm{i}\eta}{\sqrt{6}f_{\pi}}\mathbf{p}\tau_{R}+\ldots\right]$$

$$y^4 duu\tau_R = -y^4 \beta \left[p\tau_R - \frac{i\pi^0}{\sqrt{2}f_\pi} p\tau_R - \frac{i\pi^+}{f_\pi} n\tau_R - \frac{i\sqrt{3}\eta}{\sqrt{2}f_\pi} p\tau_R + \dots \right]$$

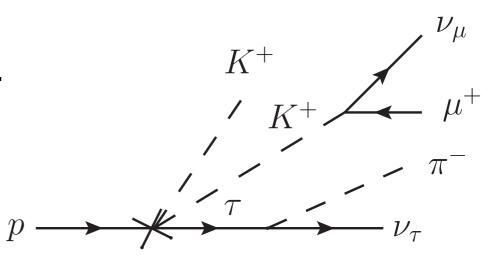
• $y^3 = y^4$ only eliminates *two-body* nucleon decays:

$$\tau(\mathbf{p}\to\eta\pi^+\bar{\nu}_\tau)\simeq 100\,\mathrm{yr}\,\left(\frac{10^{-5}}{\mathrm{BR}(\tau\to\bar{\mathbf{p}}\eta)}\right)$$
 Only old inclusive limits [JH, Takhistov, PRD '20] could easily be improved by Super-K!

Pheno '24

$\Delta B = - \Delta L_{\tau} = 1$ operators

- d=7 operators: z^1 dud $\bar{H}\bar{L}_{\tau}+z^2QQd\bar{H}\bar{L}_{\tau}+z^3$ dd $Q\bar{H}\bar{\tau}_R+z^4$ ddd $H\bar{L}_{\tau}$
- z^1 and z^2 immediately give $n \to \nu_\tau \pi^0, \nu_\tau \eta$.
- z^3 and z^4 have s quark and no v_{τ} :


$$n \xrightarrow{\tau} \nu_{\tau}$$

$$\tau(\mathbf{n} \to \mathsf{K}^+\pi^-\nu_\tau) \simeq 7000\,\mathrm{yr}\,\left(\frac{7\times 10^{-8}}{\mathrm{BR}(\tau\to\Lambda\pi^-)}\right)_{z^4=0}$$

$$\tau(\mathbf{n} \to \mathsf{K}^+\pi^-\nu_\tau) \simeq 2\times 10^5\,\mathrm{yr}\,\left(\frac{7\times 10^{-8}}{\mathrm{BR}(\tau\to\Lambda\pi^-)}\right)_{z^3=0}$$
 Only old inclusive limits: [Belle, '06] [Belle, '06]

How about ssd operator?

$\Delta B = - \Delta L_{\tau} = 1$ operators

- d=7 operator: $dssH\bar{L}_{\tau}$
- No neutrinos, two s quarks.
- Two-body tau decays but five-body nucleon decays!
- Off-shell τ and K, double suppression by G_F :

$$au(\mathsf{p} o \mathsf{K}^+\pi^+\pi^0\pi^-
u_ au) \simeq 10^{\mathcal{O}(20)}\,\mathsf{yr}\,\left(rac{10^{-7}}{\mathsf{BR}(au o \Xi\pi)}
ight)$$

τ limits still 10 orders of magnitude short

More $\Delta B = \Delta L = 1$ operators

- d=10 operator: $QQu\ell\bar{\ell}LH/\Lambda^6 \rightarrow u_Ld_Lu_R\overline{\tau_R}\ell_{\alpha}\ell_{\beta} v/\Lambda^6$.
- For $\{\alpha, \beta\} \in \{e, \mu\}$: different lepton flavor content than d=6, not related to d=6 operators. [Hambye, JH, PRL '18]
- Still proton decays $p \to \ell^+ \ell'^{\pm} \pi^{\mp} \nu_{\tau}$ more sensitive:

$$\tau(\mathrm{p}\to\mathrm{e}_{\alpha}^{+}\mathrm{e}_{\beta}^{+}\pi^{-}\nu_{\tau})\simeq2\times10^{4}\,\mathrm{yr}\,\left(\frac{3\times10^{-8}}{\mathrm{BR}(\tau^{-}\to\mathrm{pe}_{\alpha}^{-}\mathrm{e}_{\beta}^{-})}\right)\ \text{[JH \& Watkins, in progress]}$$
 Only old inclusive limits: [JH, Takhistov, PRD '20]

• Common pattern: Nucleon decays into v_{τ} far more sensitive than τ decays, but lacking exclusive or inclusive searches at Super-K. Could easily improve bounds by orders of magnitude!

[JH, Takhistov, PRD '20]

Summary

- $\Delta B = 1$ decays are our most sensitive probe of new physics via clean two-body decays into electrons, muons, neutrinos.
- $\Delta B = 1$ with tauons more involved: [JH & Watkins, in progress] $\tau^- \to \bar{p} \pi^0$ clean, but can't compete with $p \to \pi^+ \nu_\tau$ through virtual tau.
- Even finetuning can't eliminate nucleon decays, but can push them into untested multi-body channels.
- Don't be discouraged to look for ΔB tau decays!
- Be encouraged to broaden nucleon decay searches.

Explore every corner of our lamppost!

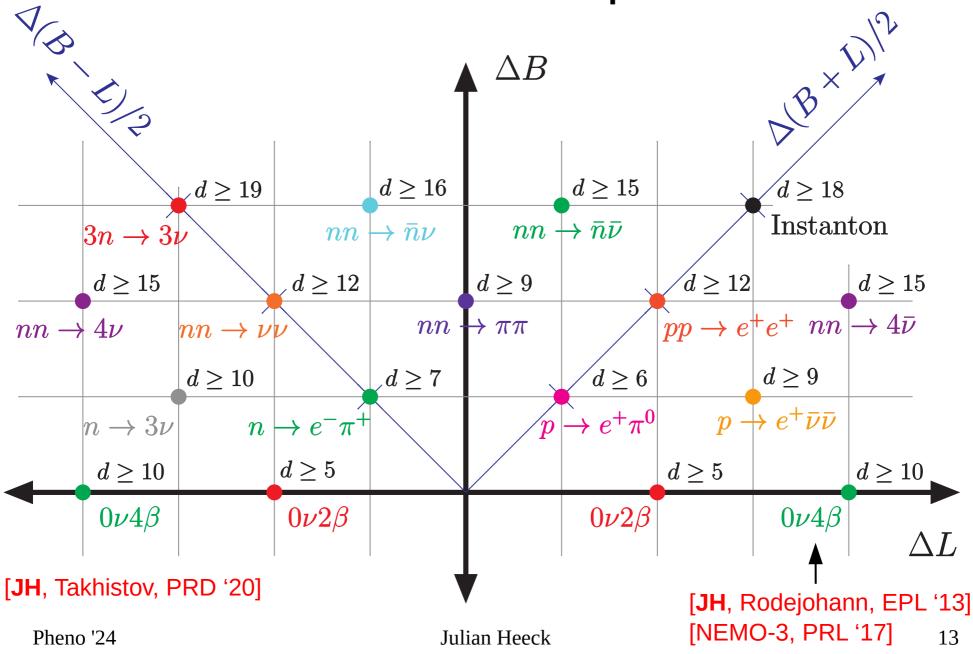
Pheno '24 Julian Heeck

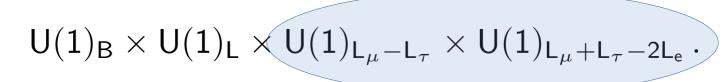
Backup

Standard Model Effective Field Theory

• EFT with Majorana neutrinos: [Weinberg, '79 & '80]

$$L = L_{SM} + \frac{LLHH}{\Lambda} + \sum_{j} \frac{\mathcal{O}_{j}}{\Lambda^{2}} + \sum_{j} \frac{\mathcal{O}_{j}'}{\Lambda^{3}} + \sum_{j} \frac{\mathcal{O}_{j}''}{\Lambda^{4}} + \dots$$

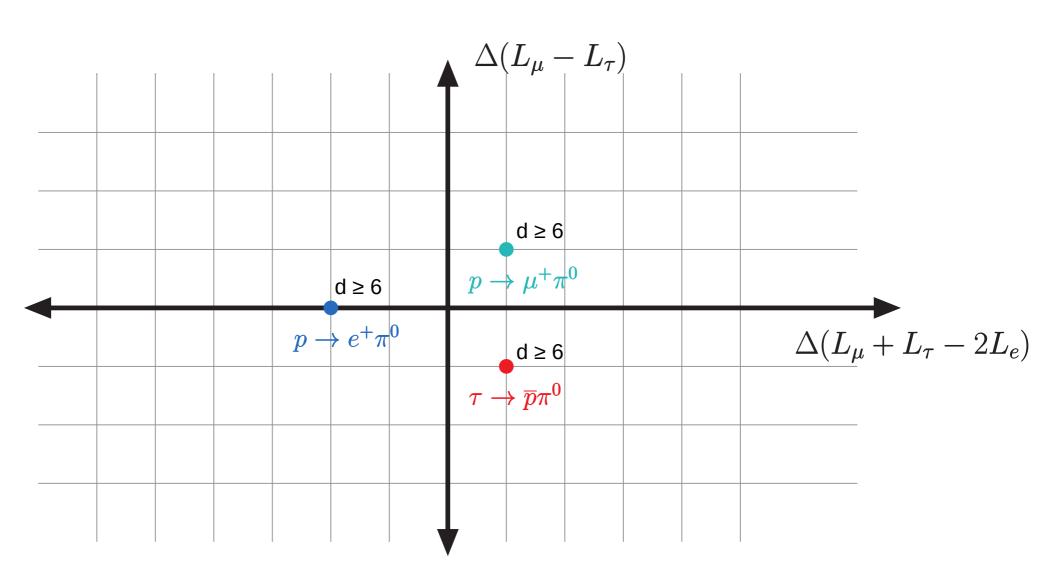

$$\Delta L = 2 \qquad \Delta B = \Delta L = 1 \qquad \Delta B = -\Delta L = 1$$

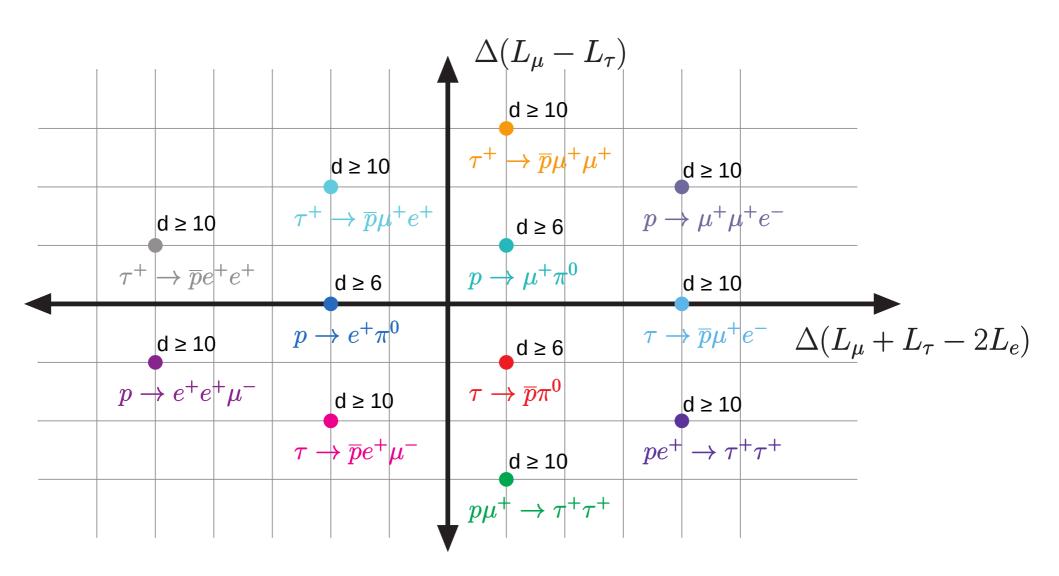

- $d_{\min} \geq \frac{9}{2} |\Delta B| + \frac{3}{2} |\Delta L|$. [Kobach '16; Helset, Kobach, '19]
- BNV sensitive to d >> 6, unlike any other experiment.
- ΔB dominated by d = 6, unless forbidden by symmetry! [Weinberg, '80]
- Some symmetry/hierarchy has to exist, otherwise

$$\Lambda \sim \langle H \rangle^2 / M_{\nu} \sim 10^{14} \text{GeV} \longrightarrow \text{Fast proton decay!}$$

Pheno '24 Julian Heeck 12

BNV landscape

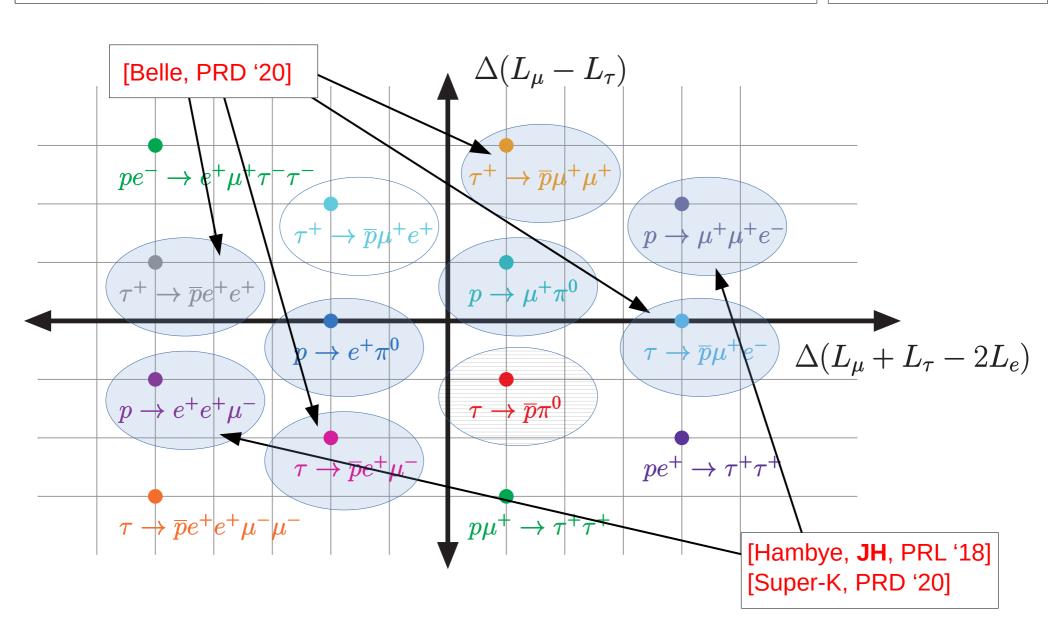



Pheno '24

Julian Heeck

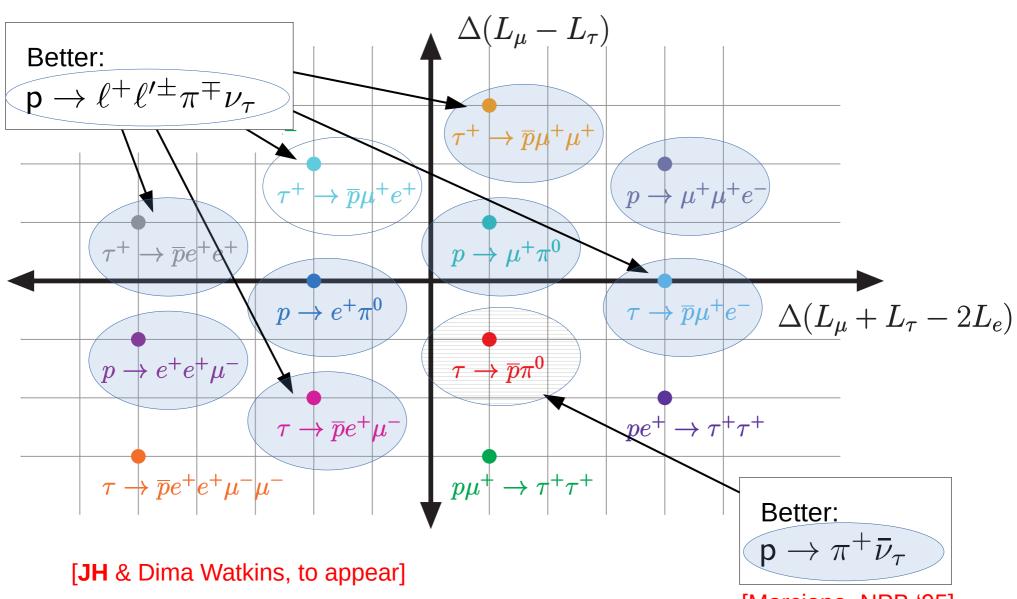
Proton decay = lepton flavor violation

Proton decay = lepton flavor violation


Proton decay = lepton flavor violation

I I I		$\Delta(L_{\mu}-L_{ au})$		
 d ≥ 12		d ≥ 10		
 $pe^{-} \rightarrow e^{+}\mu^{+}\tau$	_τ - d ≥ 10	$\tau^+ \longrightarrow \overline{p}\mu^+\mu^+$	d ≥ 10	
d ≥ 10	$\tau^+ \to \overline{p}\mu^+ e^+$	d ≥ 6	$p \rightarrow \mu^+ \mu^+ e^-$	
$\tau^+ \rightarrow \overline{p}e^+e^+$	d ≥ 6	$p o \mu^+ \pi^0$	d ≥ 10	
d ≥ 10	$p \rightarrow e^+ \pi^0$	d ≥ 6	$ au ightarrow \overline{p}\mu^+ e^- \Delta(L_\mu + L_\tau -$	$-2L_e)$
 $p \rightarrow e^+ e^+ \mu^-$	d ≥ 10	$ au ightarrow \overline{p} \pi^0$	d ≥ 10	
 d ≥ 12	$\tau \to \overline{p}e^+\mu^-$	d ≥ 10	$pe^+ \rightarrow \tau^+ \tau^+$	
$ au o \overline{p}e^+e^+\mu^-$	$-\mu^-$	$p\mu^+ \to \tau^+\tau^+$		

Currently being probed: Old results: Doable:


Currently being probed: Old results: Doable:

 $\Delta B = \Delta L = 1$

Pheno '24

Julian Heeck

[Marciano, NPB '95]

Two-body nucleon decays (38)

/ //	$10^{30} { m yr}$
0	41000 72
0	16000 24
0	10000 [73]
0	720 <u>[73]</u>
0	1600 <mark>73</mark>
0	1000 74
0	84 65
0	21000 72
0	7700 24
0	4700 73
0	570 <mark>73</mark>
0	2800 [73]
0	1600 75
0,2	390 <mark>76</mark>
0,2	162 <u>65</u>
0,2	5900 <mark>[77</mark>]
0,2	130 78
	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Many of these limits a	re
20 years old (IMB).	

$n \rightarrow e^- + \pi^+$	2	65 79 (5300* 73)
$n \to e^- + \rho^+$	2	62 79 (217* 65)
$n \to e^- + K^+$	2	32 <u>62</u>
$n \to e^- + K^{*,+}$	2	
$n \rightarrow e^+ + \pi^-$	0	5300 <u>73</u>
$n \to e^+ + \rho^-$	0	217 <mark>65</mark>
$n \to e^+ + K^-$	0	17 <mark>65</mark>
$n \to e^+ + K^{*,-}$	0	
$n \to \mu^- + \pi^+$	2	49 <u>79</u> (3500* <u>73</u>)
$n \to \mu^- + \rho^+$	2	7 79 (228* 65)
$n \to \mu^- + K^+$	2	57 <mark>62</mark>
$n \to \mu^+ + \pi^-$	0	3500 <u>73</u>
$n \to \mu^+ + \rho^-$	0	228 65
$n \to \mu^+ + K^-$	0	26 65
$n \to \nu + \gamma$	0,2	550 28
$n \to \nu + \pi^0$	0,2	1100 76
$n \to \nu + \eta$	0,2	158 <mark>65</mark>
$n \to \nu + \rho^0$	0,2	19 <mark>79</mark>
$n \to \nu + \omega$	0,2	108 65
$n \to \nu + K^0$	0,2	130 74
$n \to \nu + K^{*,0}$	0,2	78 <u>65</u>