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• Massive spin-2 propagator

• Longitudinal polarization tensor
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polarized (helicity-0) KK graviton external state, the polarization tensor can be expressed using two spin-1 polarization
vectors,

✏µ⌫0 =
1

p
6

�
✏µ+✏

⌫

� + ✏µ�✏
⌫

+ + 2✏µ0 ✏
⌫

0

�
, (20)

where the polarization vectors, for momentum with polar angle ✓ and azimuthal angle �, are defined as

✏µ± =
1

p
2

(0,⌥ cos ✓ cos� + i sin�,⌥ cos ✓ sin� � i cos�,± sin ✓)T , (21)

✏µ0 =
1

m

⇣p
E2 � m2, E sin ✓ cos�, E sin ✓ sin�, E cos ✓

⌘T
. (22)

The polarization vectors have the energy dependency, when E � m,

✏µ± ⇠ O(1), ✏µ0 ⇠ O(E/m). (23)

Thus, the longitudinal polarization tensor depends on the energy quadratically at high-energies,

✏µ⌫0 ⇠ O(E2/m2), (24)

leading to large individual contributions when computing the longitudinal KK graviton scattering amplitude in uni-
tary gauge. We show below how to rewrite these polarization vectors such that the Ward identities can be applied,
leading to amplitudes with no bad high-energy behavior.

We begin by re-expressing the amplitudes involving helicity-0 external states using the Ward Identities. Note that
one can use the the polarization sum for spin-1 polarization vectors,

✏µ⌥ = �
�
✏µ±

�⇤
,

X

�=±,0

✏µ
�
✏⌫⇤
�

= �⌘µ⌫ +
pµp⌫

m2
, (25)

to rewrite the longitudinal polarization tensor as

✏µ⌫0 =
1

p
6

✓
⌘µ⌫ �

pµp⌫

m2
+ 3✏µ0 ✏

⌫

0

◆
. (26)

The potentially bad high energy behavior from ✏µ0 can be isolated by introducing [40–42]

✏µ0 ⌘
pµ

m
+ ✏̃µ0 , where ✏̃µ0 ⌘ �

m

E + |p|
(1,�p/|p|) ⇠ O(m/E). (27)

Thus one can rewrite the longitudinal polarization tensor as

✏µ⌫0 = ✏̃µ⌫0 +
1

p
6

✓
⌘µ⌫ + 2

pµp⌫

m2
+ 3
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m

◆
, (28)

where

✏̃µ⌫0 ⌘

r
3

2
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⌫

0 ⇠ O

✓
m2

E2

◆
, (29)

thereby expressing the external longitudinal polarization tensor in terms of external momenta and sub-leading terms.
Using the Ward identities in Eqs. (18) and (19), we see that

Th

µ⌫

pµp⌫

m2
n
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p
2
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µ

pµ

mn
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2
Thµ

µ
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Th

µ⌫
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2 TA

µ
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Therefore,

Th

µ⌫

✓
⌘µ⌫ + 2

pµp⌫

m2

◆
=

p
6T' , (32)
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• As in the gauge theories, power counting is much more 
transparent in the ’t Hooft-Feynman gauge.

• Goldstone modes have the same masses as the gauge 
bosons.

• In warped extra dimension model, KK masses are 
determined by transcendental equations
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or

f (n)(zi) = 0 and (∂z+ 3A′)g(n)(zi) = 0, i= 1,2.
(III.68)

It may be instructive to note that the above conditions assure

thatΨ(z) =
(

f (n)(z)
g(n)(z)

)

satisfies the same boundary conditions

as QΨ(z) and Q†Ψ(z). In other words, the supercharges Q
and Q† act well-definedly on the functional space of Ψ(z), as
they should do.
We can repeat the same argument for g(n)(z) and k(n)(z).

For the eigenvaluemn of g(n) to be identical to that of k(n), they
have to be related each other through the equations (III.63)
and (III.64). We have already shown that the hermiticity of
the Hamiltonians for g(n) and k(n) requires Eqs.(III.59) and
(III.60). Those equations are compatible with the supersym-
metric relations (III.63) and (III.64) only when

g(n)(zi) = 0 and (∂z+ 2A′)k(n)(zi) = 0, (III.69)

or

(∂z+A′)g(n)(zi) = 0 and k(n)(zi) = 0, i= 1,2.
(III.70)

These conditions again insure that the supercharges Q̄ and Q̄†

act well-definedly on the functionsΦ(z) =
(

g(n)(z)
k(n)(z)

)

, as they

should do.
We have thus shown that candidates of possible boundary

conditions are given by Eq.(III.67) or (III.68), and Eq.(III.69)
or (III.70). Each of the three combinations, Eqs.(III.67) and
(III.70), Eqs.(III.68) and (III.69), Eqs.(III.68) and (III.70), is,
however, incompatible each other. Hence, we finally arrive
at the allowed boundary conditions (III.52) compatible with
the supersymmetry, as announced before. It is interesting to
note that for the 5d gauge theory discussed in the previous
section there are four types of possible boundary conditions
compatible with theN = 2 supersymmetry. On the other hand,
for the 5d gravity theory, the boundary conditions are uniquely
determined due to the existence of the two systems with the
N = 2 supersymmetry.

E. Spectrum

In the previous subsections, we have discussed the mode
expansions and the boundary conditions for the metric fluctu-
ation fields. Although a number of studies have already been
made on the 4d spectrum of the model, most of the works have
concentrated on the physical spectrum by taking gauge fixing
to remove unphysical degrees of freedom. In this subsection,
we present the quadratic action for the full KK modes with-
out gauge fixing, from which we can clearly know how to take
the unitary gauge to express the action in terms of the physical
degrees of freedom.

Let us first consider the metric fluctuation field hµν(x,z).
The mode expansion of hµν(x,z) is given by

hµν(x,z) =
∞

∑
n=0

h(n)µν(x) f (n)(z), (III.71)

where the mass eigenfunctions f (n) are defined by

−(∂z+ 3A′)∂z f (n)(z) = m2n f
(n)(z) (III.72)

with the boundary conditions

∂z f (n)(z) = 0 at z= z1,z2. (III.73)

It follows that the boundary conditions (III.73) allow f (n) to
have a zero mode, i.e.

∂z f (0)(z) = 0 → f (0) = const, (III.74)

with m0 = 0. The existence of the zero mode implies a mass-
less graviton h(0)µν(x). The general solutions for n $= 0 to the
equation (III.72) with the boundary conditions (III.73) are
found to be of the form

f (n)(z) =C(n)z2
(

Y1(mnz2)J2(mnz)− J1(mnz2)Y2(mnz)
)

,
(III.75)

where Jν is the Bessel function of the first kind of order ν and
Yν is the Bessel function of the second kind (or the Neumann
function) of order ν . TheC(n) is the (real) normalization con-
stant which will be determined by

M3
∫ z2

z1
dz e3A f (m)(z) f (n)(z) = δmnM2

Pl, (III.76)

where

M2
Pl =M3

∫ z2

z1
dz e3A

(

f (0)
)2
.

The mass eigenvalues mn are obtained from the solutions to
the equation

Y1(mnz2)J1(mnz1)− J1(mnz2)Y1(mnz1) = 0. (III.77)

Let us next consider the metric fluctuation field hµ5(x,z).
The mode expansion of hµ5(x,z) is given by

hµ5(x,z) =
∞

∑
n=1

h(n)µ5(x)g
(n)(z). (III.78)

Thanks to supersymmetry, the function g(n)(z) can be obtained
from f (n)(z) through the relation

g(n)(z) =
1
mn

∂z f (n)(z)

=C(n)z2
[

Y1(mnz2)J1(mnz)− J1(mnz2)Y1(mnz)
]

.
(III.79)

As was noticed before, there is no zero mode for g(n) because
a would-be zero mode solution does not satisfy the boundary

• How come Goldstones have the same non-trivial masses?
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H2 = AA
†

• For two Hamiltonians

• They have degenerate eigenvalues, except for the 
ground state

• SUSY doublet                         , with supercharges
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T
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• 5D Metric in conformal coordinates

II. SUSY IN THE RANDALL-SUNDRUM MODEL

We first review the dualN = 2 supersymmetric structure [14] of the spectrum of the unstabilized

Randall-Sundrum (RS) model.

II.1. Geometry, Field Definitions, and Quadratic Lagrangian

The 5D Lagrangian in RS1 model [7, 8] can be written as

L(RS)
5D = LEH + LCC +∆L , (2.1)

where LEH is the five-dimensional Einstein-Hilbert Lagrangian, LCC includes the bulk and brane

cosmological constants, and ∆L includes total derivative terms needed to create a well-defined vari-

ational principle for the action [28, 32]. We parametrize the RS metric in the conformal coordinates

(xµ, z) as

GMN = e2A(z)





e−κϕ̂/
√
6(ηµν + κĥµν)

κ√
2
Âµ

κ√
2
Âµ −

(

1 + κ√
6
ϕ̂
)2



 , (2.2)

where the field ĥµν(xα, z) is a four-dimensional spin-2 field, and Âµ(xα, z) and ϕ̂(xα, z) are the

four-dimensional spin-1 and spin-0 fields, respectively. The extra-dimension is taken to be the

interval z1 ≤ z ≤ z2, where we associate z1 as the location of the “Planck brane” and z2 as the

location of the “TeV brane.” Finally, the warp factor

A(z) = − ln(kz) , (2.3)

satisfies the background geometry bulk Einstein equation

A′′ − (A′)2 = 0 , (2.4)

and the value of κ is set by the bulk and brane cosmological constants.

Using these definitions, we find the kinetic (quadratic) terms of the of the fluctuating fields in

the metric can be written as

S =

∫

d4x dz e3A(z) (Lh-h + Lh-A + Lh-ϕ + LA-A + LA-ϕ + Lϕ-ϕ) , (2.5)

4

3

the external polarization tensors. In section IV, we demonstrate the GRET using two explicit examples: (a) the scat-
tering of two KK bulk scalar into two KK gravitons and (b) the scattering of two KK gravitons into two KK gravitons,
and we comment on the connection between our results and the double-copy construction suggested by [18, 19]. In sec-
tion V, we propose a novel method to compute the exact scattering amplitudes involving longitudinally polarized KK
gravitons that is free of large cancellations, and demonstrate its better convergence when only a finite number of inter-
mediate KK states are included, in comparison with the traditional computation in the unitary gauge. We conclude
in section VI with a discussion of the generality of our results and other questions to be addressed by future work. Ap-
pendix A outlines our notation, while appendix B gives the ‘t-Hooft-Feynman gauge Feynman rules needed for the com-
putations in section V. Lastly, in appendix C we derive the symmetry algebra of the residual 5D di↵eomorphisms of a
Randall-Sundrum extra-dimensional theory, extending the results of Du↵ and Dolan [33] for toroidal compactifications.

II. RS1 WARD IDENTITIES FOR KK GRAVITONS

In the 5D RS1 model [24, 25], an orbifolded slice of AdS5, the gravitational fields can be decomposed into towers
of KK four-dimensional modes [17],

hµ⌫(x
↵, z) =

1X

n=0

h(n)
µ⌫

(x↵)f (n)(z), (1)

Aµ(x↵, z) =
1X

n=1

A(n)
µ

(x↵)g(n)(z), (2)

'(x↵, z) =
1X

n=0

'(n)(x)k(n)(z) , (3)

where h(0)
µ⌫ is the massless graviton field, h(n>0)

µ⌫ are the massive KK spin-2 fields, A(n>0)
µ are the massive KK vector

Goldstone fields, '(0) is the radion field, and '(n>0) are the massive KK scalar Goldstone fields. Here z1  z  z2
is the internal compact coordinate, z1,2 are the locations of the orbifold fixed points, and the mode wavefunctions
f (n)(z), g(n)(z), and k(n)(z) (which are respectively even, odd, and even under orbifold parity) are determined by
the geometry of the internal space. A brief description of our conventions is given in Appendix A and details can be
found in [17] and references therein.

The quadratic terms of Lagragian of the graviton sector are then given by,

L2 =
X

n

✓
1

2
h(n)
µ⌫

D
µ⌫⇢�

h
h(n)
⇢�

+
1

2
A(n)

µ
D

µ⌫

A
A(n)

⌫
+

1

2
'(n)D''

(n)

◆
. (4)

Crucially [15, 16], the wave equations for these modes of di↵erent spin are related by a pair of N = 2 quantum-
mechanical SUSY symmetries that enforce the degeneracy of the non-zero mass modes of these di↵erent spins, a
situation that also holds in the case of a stabilized extra dimension [17], and hence the inverse propagators are given by

D
µ⌫⇢�

h
=

1

2
(⌘µ⇢⌘⌫� + ⌘µ�⌘⌫⇢ � ⌘µ⌫⌘⇢�) (�⇤ � m2

n
), (5)

D
µ⌫

A
= �⌘µ⌫(�⇤ � m2

n
), (6)

D' = �⇤ � m2
n
. (7)

In addition, the degeneracy of these di↵erent modes allows one to adopt a ’t Hooft-Feynman gauge for gravity [15, 16]
with a warped internal dimension, ( here h(n)

⌘ h(n)µ
µ)

LGF =
X

n

F (n)µF (n)
µ

� F (n)
5 F (n)

5 , (8)

F (n)
µ

= �

✓
@⌫h(n)

µ⌫
�

1

2
@µh

(n) +
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mnA
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2
mnh
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�

1
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2
@µA(n)

µ
+

r
3

2
mn'

(n)

!
. (10)

From the gauge fixing condition, one can derive the Ward identities [18, 39] for the time-ordered matrix elements

hTF (n)
µ

(x)�i = hTF (n)
5 (x)�i = 0, (11)

• KK decomposition
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Appendix A: Notation

The 5D Lagrangian of the RS1 model is given by

L = LEH + LCC + �L + LGF + Lm (A1)

where LEH and LCC are the usual Einstein-Hilbert and cosmological constant terms respectively. The �L term is a
total derivative term required for a well defined variational principle for the action. LGF is gauge fixing term and Lm

is the Lagrangian of the matter fields7. The RS1 line element in conformal coordinates (xµ, z) is written as,

ds2 = e2A(z)(⌘µ⌫dx
µdx⌫

� dz2), (A2)

where the background 4D Minkowski metric ⌘µ⌫ ⌘ diag(+1,�1,�1,�1) is used to raise and lower indices, and z
lies in the interval z1 = 1/k  z  z2 = ek⇡rc/k, where k is the AdS curvature and rc is the RS1 “compactification
radius,” a measure of the size of the internal dimension.8 The warp factor A(z) is given by,

A(z) = � ln(kz) , (A3)

The metric, including fluctuations, can then be written as,

GMN = e2A(z)

0

B@
e�'/

p
6(⌘µ⌫ + hµ⌫(x, z))

p
2
Aµ(x, z)

p
2
Aµ(x, z) �

⇣
1 + p

6
'(x, z)

⌘2

1

CA , (A4)

The metric fluctuations hµ⌫(x, z) define the spin-2 fluctuations in 4D, while Aµ(x, z) and '(x, z) are the spin-1 and
spin-0 fluctuations respectively. Here we have followed the notation in Ref. [15–17] and we refer the reader there for
details.

Appendix B: Feynman Rules

The relevant Feynman rules that are used in Sec. IV are given below,

h(n1)
µ⌫

S(n2)

S(n3)

p1
p2

p3

=
i

2
hf (n1)f (n2)

S
f (n3)
S

i (pµ2p
⌫

3 + p⌫2p
µ

3 � ⌘µ⌫p2 · p3) + O
�
(pi)

0
�
, (B1)

h(n1)
µ⌫

'(n2)

'(n3)

p1
p2

p3

=
i

24
hf (n1)k(n2)k(n3)i [4pµ1p

⌫

1 � 12pµ2p
⌫

2 � 12pµ3p
⌫

3

�⌘µ⌫
�
2p21 + 6p22 + 6p23

�⇤
+ O

�
(pi)

0
� , (B2)

'(n1)

'(n2)

'(n3)

p1
p2

p3

= �
i
p

6
hk(n1)k(n2)k(n3)i

�
p21 + p22 + p23

�
+ O

�
(pi)

0
�
, (B3)

7The mathematical expressions for each of these terms are provided in [23] and in conformal co-ordinates in [17]
8The dimensionless ratio krc is a convenient measure of how “warped” the internal space is and determines the mode functions and overlap
integrals needed to compute scattering amplitudes.
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•       ,        , and        have degenerate spectra, except 
for the massless state
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• Similar  “eaten” pattern for GW model
(See arXiv: 2207.02887 for details)
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∞
∑

n=1

π̂(n)(x)k(n)(z) , (2.32)

where we choose the normalizations of the modes f (n)(z), g(n)(z), and k(n)(z) with respect to the

inner-product in Eq. (2.13), 〈f (n)f (m)〉 = δn and analogously for g(n) and k(n). As we see below,

the massive KK gravitons ĥ(n)µν (n > 0) acquire their masses by absorbing the KK Goldstone modes

Â(n)
µ and π̂(n) with n #= 0, as in the case when the internal manifold is toroidal or flat [13, 30, 31].

II.3. 5D Diffeomorphism Invariance

The 5D Lagrangian is invariant under an infinitesimal coordinate transformation,

xM $→ xM = xM + ξM . (2.33)

At linearized level, the induced transformation on the metric and fields are
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• For a infinitesimal coordinate transformation

• Expand the parameter using wave functions

• KK modes transform as
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FIG. 2. Schematic Feynman diagrams involving one internal KK graviton, one KK vector Goldstone boson, or one KK scalar
Goldstone boson.

such that the above identities relating amplitudes can be written as,

Th

µ⌫
✏µ⌫
�

= TMN ✏̃MN

�
. (44)

Correspondingly, we can parametrize the scattering matrix TMN as in Eq. (43) so that the internal propagators can
be also written as a 5D graviton propagator that has the tensor structure of a 5D massless graviton. For a scattering
shown in Fig. 2, the amplitude can be written as
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X µ⌫
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h
Th

Y ⇢�
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X µ
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where the propagators are give by
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n
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✓
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�
2

3
⌘MN⌘RS

◆
. (47)

In this section, combining the results of [15, 16] for the RS1 model, we have extended the analysis of [18, 19] to
establish the gravitational Goldstone boson Equivalence theorem for the scattering amplitudes in the compactified
RS1 model (see Sec. IV for a brief discussion of the GW model). To leading order, the Goldstone boson Equivalence
theorem relates the scattering of helicity-0 and helicity-1 KK gravitons to that of the Goldstone bosons present in ‘t-
Hooft-Feynman gauge, Eqs. (40) and (41). The analysis of the RS1 model in a ‘t-Hooft-Feynman gauge is only possible
because of residual 5D di↵eomorphism invariance of the theory, which can be formally described by the algebra given
in appendix C. Power-counting of the Goldstone boson amplitudes in ‘t-Hooft-Feynman gauge demonstrates that the
scattering amplitudes of KK-gravitons among themselves or with matter can grow no faster than O(s), explaining the
cancellations observed in the unitary gauge calculations of [20–23]. It is important to remember that the Goldstone
boson Equivalence theorem relates the scattering of KK gravitons to that of the Goldstone bosons only to leading
order, O(s). In the case of vanishing scattering amplitudes at O(s) due to helicity selection rules, one would have to
include the subleading terms in Eqs. (33) and (36).

To use these results to compute scattering amplitudes, one must construct the couplings of the Goldstone bosons
in ‘t-Hooft-Feynman gauge. We illustrate this in the next section in RS1, checking that the results agree to leading
order with previous unitary-gauge computations. As we explain more completely in Sec. VI, however, although the
form of the Equivalence theorem will remain the same in other warped geometries, the computation of the Goldstone
boson matrix elements will depend on the details of the model.

IV. APPLYING THE EQUIVALENCE THEOREM: TWO EXAMPLES

In this section, we apply the Goldstone boson Equivalence theorem in RS1 to the scattering of two longitudinally
polarized KK gravitons into a pair of KK scalars, and to the elastic scattering of the longitudinally polarized KK
gravitons. We show that, to leading order in energy, the scattering amplitude involving helicity-0 spin-2 particles
[23, 30] equals the ‘t-Hooft-Feynman gauge amplitude for the scalar Goldstone boson, per Eq. (34). We would like to
emphasize that, while we choose the RS1 model for our examples in this paper, the form of the Equivalence theorem
is generic for other warped background geometries, such as in a GW model [28, 29], though the interactions among
the Goldstone bosons will di↵er from those evaluated here in RS1.

• Unitary gauge

• Feynman gauge
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Correspondingly, we can parametrize the scattering matrix TMN as in Eq. (43) so that the internal propagators can
be also written as a 5D graviton propagator that has the tensor structure of a 5D massless graviton. For a scattering
shown in Fig. 2, the amplitude can be written as
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where the propagators are give by
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In this section, combining the results of [15, 16] for the RS1 model, we have extended the analysis of [18, 19] to
establish the gravitational Goldstone boson Equivalence theorem for the scattering amplitudes in the compactified
RS1 model (see Sec. IV for a brief discussion of the GW model). To leading order, the Goldstone boson Equivalence
theorem relates the scattering of helicity-0 and helicity-1 KK gravitons to that of the Goldstone bosons present in ‘t-
Hooft-Feynman gauge, Eqs. (40) and (41). The analysis of the RS1 model in a ‘t-Hooft-Feynman gauge is only possible
because of residual 5D di↵eomorphism invariance of the theory, which can be formally described by the algebra given
in appendix C. Power-counting of the Goldstone boson amplitudes in ‘t-Hooft-Feynman gauge demonstrates that the
scattering amplitudes of KK-gravitons among themselves or with matter can grow no faster than O(s), explaining the
cancellations observed in the unitary gauge calculations of [20–23]. It is important to remember that the Goldstone
boson Equivalence theorem relates the scattering of KK gravitons to that of the Goldstone bosons only to leading
order, O(s). In the case of vanishing scattering amplitudes at O(s) due to helicity selection rules, one would have to
include the subleading terms in Eqs. (33) and (36).

To use these results to compute scattering amplitudes, one must construct the couplings of the Goldstone bosons
in ‘t-Hooft-Feynman gauge. We illustrate this in the next section in RS1, checking that the results agree to leading
order with previous unitary-gauge computations. As we explain more completely in Sec. VI, however, although the
form of the Equivalence theorem will remain the same in other warped geometries, the computation of the Goldstone
boson matrix elements will depend on the details of the model.

IV. APPLYING THE EQUIVALENCE THEOREM: TWO EXAMPLES

In this section, we apply the Goldstone boson Equivalence theorem in RS1 to the scattering of two longitudinally
polarized KK gravitons into a pair of KK scalars, and to the elastic scattering of the longitudinally polarized KK
gravitons. We show that, to leading order in energy, the scattering amplitude involving helicity-0 spin-2 particles
[23, 30] equals the ‘t-Hooft-Feynman gauge amplitude for the scalar Goldstone boson, per Eq. (34). We would like to
emphasize that, while we choose the RS1 model for our examples in this paper, the form of the Equivalence theorem
is generic for other warped background geometries, such as in a GW model [28, 29], though the interactions among
the Goldstone bosons will di↵er from those evaluated here in RS1.
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cancellations observed in the unitary gauge calculations of [20–23]. It is important to remember that the Goldstone
boson Equivalence theorem relates the scattering of KK gravitons to that of the Goldstone bosons only to leading
order, O(s). In the case of vanishing scattering amplitudes at O(s) due to helicity selection rules, one would have to
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To use these results to compute scattering amplitudes, one must construct the couplings of the Goldstone bosons
in ‘t-Hooft-Feynman gauge. We illustrate this in the next section in RS1, checking that the results agree to leading
order with previous unitary-gauge computations. As we explain more completely in Sec. VI, however, although the
form of the Equivalence theorem will remain the same in other warped geometries, the computation of the Goldstone
boson matrix elements will depend on the details of the model.
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polarized KK gravitons into a pair of KK scalars, and to the elastic scattering of the longitudinally polarized KK
gravitons. We show that, to leading order in energy, the scattering amplitude involving helicity-0 spin-2 particles
[23, 30] equals the ‘t-Hooft-Feynman gauge amplitude for the scalar Goldstone boson, per Eq. (34). We would like to
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6

and the longitudinal scattering amplitude can be expressed as

Th

µ⌫
✏µ⌫0 = T'

� i
p

3TA

µ
✏̃µ0 + Th

µ⌫
✏̃µ⌫0 . (33)

Note that there is no bad high energy behavior coming from the external polarization tensors or vectors on the right
hand side of Eq. (33); the second and third terms on the right hand side of Eq. (33) are relatively suppressed due to
the fact that ✏̃µ0 ⇠ O(m/E) and ✏̃µ⌫0 ⇠ O(m2/E2).

This expression confirms and extends the Goldstone boson Equivalence theorem given by Hang and He for lon-
gitudinal KK graviton scattering [18, 19], namely that the scattering amplitude of the longitudinally polarized KK
gravitons equals that of the scalar KK Goldstone boson in the high energy limit,

Th

µ⌫
✏µ⌫0 = T' + O(s0). (34)

Furthermore, our derivation of Eq. (33) demonstrates that the Equivalence theorem is valid for a warped internal
space and gives an explicit expression for the residual terms not captured by the leading-order expression.

Similarly, using the definitions of the helicity ±1 polarization tensors

✏µ⌫±1 =
1

p
2

�
✏µ±✏

⌫

0 + ✏µ0 ✏
⌫

±
�
, (35)

and using the decomposition of ✏µ0 given in Eq.(27) and applying the Ward identities, one finds the following identities
for helicity ±1 states,
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µ
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⇣m
E

⌘
. (37)

Therefore, the Goldstone boson Equivalence theorem for the helicity ±1 states is: the scattering amplitude of the KK
gravitons with helicities ±1 equals that of the vector KK Goldstone boson in the high energy limit up to a overall
phase,

Th

µ⌫
✏µ⌫±1 = �iTA

µ
✏µ± + O(s0). (38)

While we have derived the above identities for one external KK graviton, one can easily generalize it to the case of
multiple external KK gravitons, by examining

hTF (n1)
µ/5 (x)F (n2)

⌫/5 (x) · · · �i = 0. (39)

By neglecting the subleading terms, we arrive at the Goldstone Equivalence theorem for the helicity-0 KK gravitons,
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± · · ·

i
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where Nin (Nout) is the number of incoming (outgoing) helicity ±1 KK graviton states.
We also note that one can organize the above results into a more compact way by introducing 5D polarization

tensors as
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FIG. 1. Schematic Feynman diagrams involving one external KK graviton, one KK vector Goldstone boson, or one KK scalar
Goldstone boson.

where � denotes any other on-shell physical fields after the Lehmann-Symanzik-Zimmermann (LSZ) amputation.
Plugging in the gauge fixing condition in Eqs. (9) and (10), we have the following identities for the time-ordered
Green’s functions
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Because of the mass degeneracy of hn

µ⌫
, An

µ
and 'n, we can amputate these external states at the same time by

multiplying by (�⇤ � m2
n
).

Now consider the processes shown in Fig. 1, whose scattering amplitudes, M, can be written, respectively, as

M
h = ✏µ⌫(p)Th

µ⌫
, M

A = ✏µ(p)TA

µ
, M

' = T', (14)

where the ✏µ⌫ and ✏µ are the polarization vectors of the external spin-2 and spin-1 particles. Note that the sub-
amplitudes Th

µ⌫
, TA

µ
and T' are related to the corresponding Green’s functions by LSZ amputation,
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Assuming the momentum is incoming, one derives the following Ward identities,
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2
mnT

' = 0. (19)

Note that the derivation of the Ward identities above only relies on the gauge fixing conditions in Eqs. (9) and
(10), and will work in any geometry in which these gauge-fixing conditions can be applied. In particular, the same
conditions apply in toroidal compactifications [18, 19], and we discuss the generalization to the GW model in Sec. IV.
We note that the identity will also work if the KK graviton is o↵-shell.

We use these Ward identities to formulate the Goldstone boson Equivalence theorems in the next section.

III. THE GOLDSTONE BOSON EQUIVALENCE THEOREM IN RS1

In this section we will use the Ward Identities in Eqs. (18) and (19) to relate amplitudes with one or more helicity-0 or
helicity-1 external states with the corresponding Goldstone boson amplitudes in the RS1 model. For the longitudinally
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Note that the derivation of the Ward identities above only relies on the gauge fixing conditions in Eqs. (9) and
(10), and will work in any geometry in which these gauge-fixing conditions can be applied. In particular, the same
conditions apply in toroidal compactifications [18, 19], and we discuss the generalization to the GW model in Sec. IV.
We note that the identity will also work if the KK graviton is o↵-shell.

We use these Ward identities to formulate the Goldstone boson Equivalence theorems in the next section.
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where � denotes any other on-shell physical fields after the Lehmann-Symanzik-Zimmermann (LSZ) amputation.
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Note that the derivation of the Ward identities above only relies on the gauge fixing conditions in Eqs. (9) and
(10), and will work in any geometry in which these gauge-fixing conditions can be applied. In particular, the same
conditions apply in toroidal compactifications [18, 19], and we discuss the generalization to the GW model in Sec. IV.
We note that the identity will also work if the KK graviton is o↵-shell.

We use these Ward identities to formulate the Goldstone boson Equivalence theorems in the next section.
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Note that the derivation of the Ward identities above only relies on the gauge fixing conditions in Eqs. (9) and
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polarized (helicity-0) KK graviton external state, the polarization tensor can be expressed using two spin-1 polarization
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The polarization vectors have the energy dependency, when E � m,

✏µ± ⇠ O(1), ✏µ0 ⇠ O(E/m). (23)

Thus, the longitudinal polarization tensor depends on the energy quadratically at high-energies,

✏µ⌫0 ⇠ O(E2/m2), (24)

leading to large individual contributions when computing the longitudinal KK graviton scattering amplitude in uni-
tary gauge. We show below how to rewrite these polarization vectors such that the Ward identities can be applied,
leading to amplitudes with no bad high-energy behavior.

We begin by re-expressing the amplitudes involving helicity-0 external states using the Ward Identities. Note that
one can use the the polarization sum for spin-1 polarization vectors,
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The potentially bad high energy behavior from ✏µ0 can be isolated by introducing [40–42]
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thereby expressing the external longitudinal polarization tensor in terms of external momenta and sub-leading terms.
Using the Ward identities in Eqs. (18) and (19), we see that
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• For a scattering involving a longitudinal KK graviton
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and the longitudinal scattering amplitude can be expressed as
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µ⌫
✏µ⌫0 = T'
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µ⌫
✏̃µ⌫0 . (33)

Note that there is no bad high energy behavior coming from the external polarization tensors or vectors on the right
hand side of Eq. (33); the second and third terms on the right hand side of Eq. (33) are relatively suppressed due to
the fact that ✏̃µ0 ⇠ O(m/E) and ✏̃µ⌫0 ⇠ O(m2/E2).

This expression confirms and extends the Goldstone boson Equivalence theorem given by Hang and He for lon-
gitudinal KK graviton scattering [18, 19], namely that the scattering amplitude of the longitudinally polarized KK
gravitons equals that of the scalar KK Goldstone boson in the high energy limit,

Th
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✏µ⌫0 = T' + O(s0). (34)

Furthermore, our derivation of Eq. (33) demonstrates that the Equivalence theorem is valid for a warped internal
space and gives an explicit expression for the residual terms not captured by the leading-order expression.

Similarly, using the definitions of the helicity ±1 polarization tensors

✏µ⌫±1 =
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p
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⌫

0 + ✏µ0 ✏
⌫

±
�
, (35)

and using the decomposition of ✏µ0 given in Eq.(27) and applying the Ward identities, one finds the following identities
for helicity ±1 states,
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where

✏̃µ⌫±1 ⌘
1

p
2

�
✏µ±✏̃

⌫

0 + ✏̃µ0 ✏
⌫

±
�

⇠ O

⇣m
E

⌘
. (37)

Therefore, the Goldstone boson Equivalence theorem for the helicity ±1 states is: the scattering amplitude of the KK
gravitons with helicities ±1 equals that of the vector KK Goldstone boson in the high energy limit up to a overall
phase,
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µ⌫
✏µ⌫±1 = �iTA

µ
✏µ± + O(s0). (38)

While we have derived the above identities for one external KK graviton, one can easily generalize it to the case of
multiple external KK gravitons, by examining

hTF (n1)
µ/5 (x)F (n2)

⌫/5 (x) · · · �i = 0. (39)

By neglecting the subleading terms, we arrive at the Goldstone Equivalence theorem for the helicity-0 KK gravitons,
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and for the helicity ±1 KK gravitons,
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where Nin (Nout) is the number of incoming (outgoing) helicity ±1 KK graviton states.
We also note that one can organize the above results into a more compact way by introducing 5D polarization
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polarized (helicity-0) KK graviton external state, the polarization tensor can be expressed using two spin-1 polarization
vectors,

✏µ⌫0 =
1

p
6

�
✏µ+✏

⌫

� + ✏µ�✏
⌫

+ + 2✏µ0 ✏
⌫

0

�
, (20)

where the polarization vectors, for momentum with polar angle ✓ and azimuthal angle �, are defined as

✏µ± =
1

p
2

(0,⌥ cos ✓ cos� + i sin�,⌥ cos ✓ sin� � i cos�,± sin ✓)T , (21)
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1

m

⇣p
E2 � m2, E sin ✓ cos�, E sin ✓ sin�, E cos ✓

⌘T
. (22)

The polarization vectors have the energy dependency, when E � m,

✏µ± ⇠ O(1), ✏µ0 ⇠ O(E/m). (23)

Thus, the longitudinal polarization tensor depends on the energy quadratically at high-energies,

✏µ⌫0 ⇠ O(E2/m2), (24)

leading to large individual contributions when computing the longitudinal KK graviton scattering amplitude in uni-
tary gauge. We show below how to rewrite these polarization vectors such that the Ward identities can be applied,
leading to amplitudes with no bad high-energy behavior.

We begin by re-expressing the amplitudes involving helicity-0 external states using the Ward Identities. Note that
one can use the the polarization sum for spin-1 polarization vectors,
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to rewrite the longitudinal polarization tensor as
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⌫
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◆
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The potentially bad high energy behavior from ✏µ0 can be isolated by introducing [40–42]
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pµ

m
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(1,�p/|p|) ⇠ O(m/E). (27)

Thus one can rewrite the longitudinal polarization tensor as
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where
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✓
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◆
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thereby expressing the external longitudinal polarization tensor in terms of external momenta and sub-leading terms.
Using the Ward identities in Eqs. (18) and (19), we see that
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p
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✏̃µ0 . (31)

Therefore,
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✓
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◆
=

p
6T' , (32)

Bad energy growth subtracted.

mailto:xiw006@physics.ucsd.edu


Equivalence Theorem for KK Gravitons

11
Xing Wang, UCSD xiw006@physics.ucsd.edu

<latexit sha1_base64="1Y6iabTEyuDhMbJI6nzCzpuQPow=">AAAB9XicbVDLSgMxFL3xWeur6tJNsAh1U2ZE1GXRjTsr2Ae0Y8mkmTY0kxmSjFKG/ocbF4q49V/c+Tdm2llo64HA4Zx7uSfHjwXXxnG+0dLyyuraemGjuLm1vbNb2ttv6ihRlDVoJCLV9olmgkvWMNwI1o4VI6EvWMsfXWd+65EpzSN5b8Yx80IykDzglBgrPXRDYoaUiPR2UnFPeqWyU3WmwIvEzUkZctR7pa9uP6JJyKShgmjdcZ3YeClRhlPBJsVuollM6IgMWMdSSUKmvXSaeoKPrdLHQaTskwZP1d8bKQm1Hoe+ncxS6nkvE//zOokJLr2UyzgxTNLZoSAR2EQ4qwD3uWLUiLElhCpus2I6JIpQY4sq2hLc+S8vkuZp1T2vundn5dpVXkcBDuEIKuDCBdTgBurQAAoKnuEV3tATekHv6GM2uoTynQP4A/T5A8mJkgs=</latexit>

O(1) <latexit sha1_base64="LxiCz9hiWohS2Hx0moGQCKMOetA=">AAAB9XicdVDLTgIxFL2DL8QX6tJNIzHBzWRmQMAd0Y07MREwgZF0SoGGziNtR0Mm/IcbFxrj1n9x59/YAUzU6EmanJxzb+7p8SLOpLKsDyOztLyyupZdz21sbm3v5Hf3WjKMBaFNEvJQ3HhYUs4C2lRMcXoTCYp9j9O2Nz5P/fYdFZKFwbWaRNT18TBgA0aw0tJt18dqRDBPLqdFedzLFyzztFZxThxkmZZVdUqVlDjVslNCtlZSFGCBRi//3u2HJPZpoAjHUnZsK1JugoVihNNprhtLGmEyxkPa0TTAPpVuMks9RUda6aNBKPQLFJqp3zcS7Es58T09maaUv71U/MvrxGpQcxMWRLGiAZkfGsQcqRClFaA+E5QoPtEEE8F0VkRGWGCidFE5XcLXT9H/pOWYdsW0r8qF+tmijiwcwCEUwYYq1OECGtAEAgIe4AmejXvj0XgxXuejGWOxsw8/YLx9ApDLkpE=</latexit>

O(s)

<latexit sha1_base64="bXtbGOJKHXhyZse+OBYKh0VoNQE="></latexit>

O

✓
1

s

◆
<latexit sha1_base64="VXjsc8tz6u9OsVQ/+wi1c5Y26Ko=">AAAB/HicbVDLSsNAFL3xWeur2qWbwSLUTUlE1GXRjTsr2Ac0oUymk3boZBJmJkII9VfcuFDErR/izr9x0mahrQcGDufcyz1z/JgzpW3721pZXVvf2Cxtlbd3dvf2KweHHRUlktA2iXgkez5WlDNB25ppTnuxpDj0Oe36k5vc7z5SqVgkHnQaUy/EI8ECRrA20qBSdRULkRtiPSaYZ3fTujodVGp2w54BLROnIDUo0BpUvtxhRJKQCk04Vqrv2LH2Miw1I5xOy26iaIzJBI9o31CBQ6q8bBZ+ik6MMkRBJM0TGs3U3xsZDpVKQ99M5inVopeL/3n9RAdXXsZEnGgqyPxQkHCkI5Q3gYZMUqJ5aggmkpmsiIyxxESbvsqmBGfxy8ukc9ZwLhrO/XmteV3UUYIjOIY6OHAJTbiFFrSBQArP8Apv1pP1Yr1bH/PRFavYqcIfWJ8/KruUdQ==</latexit>

⇠ O(s)

6

and the longitudinal scattering amplitude can be expressed as
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✏µ⌫0 = T'

� i
p

3TA

µ
✏̃µ0 + Th

µ⌫
✏̃µ⌫0 . (33)

Note that there is no bad high energy behavior coming from the external polarization tensors or vectors on the right
hand side of Eq. (33); the second and third terms on the right hand side of Eq. (33) are relatively suppressed due to
the fact that ✏̃µ0 ⇠ O(m/E) and ✏̃µ⌫0 ⇠ O(m2/E2).

This expression confirms and extends the Goldstone boson Equivalence theorem given by Hang and He for lon-
gitudinal KK graviton scattering [18, 19], namely that the scattering amplitude of the longitudinally polarized KK
gravitons equals that of the scalar KK Goldstone boson in the high energy limit,

Th

µ⌫
✏µ⌫0 = T' + O(s0). (34)

Furthermore, our derivation of Eq. (33) demonstrates that the Equivalence theorem is valid for a warped internal
space and gives an explicit expression for the residual terms not captured by the leading-order expression.

Similarly, using the definitions of the helicity ±1 polarization tensors

✏µ⌫±1 =
1

p
2

�
✏µ±✏

⌫

0 + ✏µ0 ✏
⌫

±
�
, (35)

and using the decomposition of ✏µ0 given in Eq.(27) and applying the Ward identities, one finds the following identities
for helicity ±1 states,
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µ⌫
✏µ⌫±1 = �iTA

µ
✏µ± + Th
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where
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Therefore, the Goldstone boson Equivalence theorem for the helicity ±1 states is: the scattering amplitude of the KK
gravitons with helicities ±1 equals that of the vector KK Goldstone boson in the high energy limit up to a overall
phase,

Th

µ⌫
✏µ⌫±1 = �iTA

µ
✏µ± + O(s0). (38)

While we have derived the above identities for one external KK graviton, one can easily generalize it to the case of
multiple external KK gravitons, by examining

hTF (n1)
µ/5 (x)F (n2)

⌫/5 (x) · · · �i = 0. (39)

By neglecting the subleading terms, we arrive at the Goldstone Equivalence theorem for the helicity-0 KK gravitons,
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i
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i
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and for the helicity ±1 KK gravitons,
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where Nin (Nout) is the number of incoming (outgoing) helicity ±1 KK graviton states.
We also note that one can organize the above results into a more compact way by introducing 5D polarization

tensors as
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and the longitudinal scattering amplitude can be expressed as

Th

µ⌫
✏µ⌫0 = T'

� i
p

3TA

µ
✏̃µ0 + Th

µ⌫
✏̃µ⌫0 . (33)

Note that there is no bad high energy behavior coming from the external polarization tensors or vectors on the right
hand side of Eq. (33); the second and third terms on the right hand side of Eq. (33) are relatively suppressed due to
the fact that ✏̃µ0 ⇠ O(m/E) and ✏̃µ⌫0 ⇠ O(m2/E2).

This expression confirms and extends the Goldstone boson Equivalence theorem given by Hang and He for lon-
gitudinal KK graviton scattering [18, 19], namely that the scattering amplitude of the longitudinally polarized KK
gravitons equals that of the scalar KK Goldstone boson in the high energy limit,

Th

µ⌫
✏µ⌫0 = T' + O(s0). (34)

Furthermore, our derivation of Eq. (33) demonstrates that the Equivalence theorem is valid for a warped internal
space and gives an explicit expression for the residual terms not captured by the leading-order expression.

Similarly, using the definitions of the helicity ±1 polarization tensors

✏µ⌫±1 =
1
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and using the decomposition of ✏µ0 given in Eq.(27) and applying the Ward identities, one finds the following identities
for helicity ±1 states,

Th
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where
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Therefore, the Goldstone boson Equivalence theorem for the helicity ±1 states is: the scattering amplitude of the KK
gravitons with helicities ±1 equals that of the vector KK Goldstone boson in the high energy limit up to a overall
phase,
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µ⌫
✏µ⌫±1 = �iTA

µ
✏µ± + O(s0). (38)

While we have derived the above identities for one external KK graviton, one can easily generalize it to the case of
multiple external KK gravitons, by examining

hTF (n1)
µ/5 (x)F (n2)

⌫/5 (x) · · · �i = 0. (39)

By neglecting the subleading terms, we arrive at the Goldstone Equivalence theorem for the helicity-0 KK gravitons,
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and for the helicity ±1 KK gravitons,
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where Nin (Nout) is the number of incoming (outgoing) helicity ±1 KK graviton states.
We also note that one can organize the above results into a more compact way by introducing 5D polarization

tensors as
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and the longitudinal scattering amplitude can be expressed as
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Note that there is no bad high energy behavior coming from the external polarization tensors or vectors on the right
hand side of Eq. (33); the second and third terms on the right hand side of Eq. (33) are relatively suppressed due to
the fact that ✏̃µ0 ⇠ O(m/E) and ✏̃µ⌫0 ⇠ O(m2/E2).

This expression confirms and extends the Goldstone boson Equivalence theorem given by Hang and He for lon-
gitudinal KK graviton scattering [18, 19], namely that the scattering amplitude of the longitudinally polarized KK
gravitons equals that of the scalar KK Goldstone boson in the high energy limit,
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Furthermore, our derivation of Eq. (33) demonstrates that the Equivalence theorem is valid for a warped internal
space and gives an explicit expression for the residual terms not captured by the leading-order expression.
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and using the decomposition of ✏µ0 given in Eq.(27) and applying the Ward identities, one finds the following identities
for helicity ±1 states,
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Therefore, the Goldstone boson Equivalence theorem for the helicity ±1 states is: the scattering amplitude of the KK
gravitons with helicities ±1 equals that of the vector KK Goldstone boson in the high energy limit up to a overall
phase,
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While we have derived the above identities for one external KK graviton, one can easily generalize it to the case of
multiple external KK gravitons, by examining

hTF (n1)
µ/5 (x)F (n2)

⌫/5 (x) · · · �i = 0. (39)

By neglecting the subleading terms, we arrive at the Goldstone Equivalence theorem for the helicity-0 KK gravitons,
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where Nin (Nout) is the number of incoming (outgoing) helicity ±1 KK graviton states.
We also note that one can organize the above results into a more compact way by introducing 5D polarization

tensors as
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O(m2/E2)

• True for torus, Randall-Sundrum, and Goldberger-Wise models.
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A. Scattering of two KK bulk scalars into two helicity-0 KK gravitons

For the first example, we consider the scattering of two KK bulk scalar into two longitudinal KK gravitons,

S(n1)S(n2) ! h(n3)
L

h(n4)
L

. (48)

According to the Goldstone boson Equivalence theorem, one should expect

M

h
S(n1)S(n2) ! h(n3)

L
h(n4)
L

i
= M

h
S(n1)S(n2) ! '(n3)'(n4)

i
+ O(s0). (49)

We take the matter Lagrangian for a real bulk scalar S with a mass MS to be (the metric GMN is defined in
appendix A)

Lm =
p

G

✓
1

2
GMN@MS@NS �

1

2
M2

S
S2

◆
, (50)

subject to the boundary conditions,4

@zS = 0 at z = z1,2. (51)

In the above expression
p
G denotes the determinant of the 5D metric. Following the notation in Ref. [30], we

decompose the bulk scalar field into KK modes,

S(x↵, z) =
1X

n=0

S(n)(x↵)f (n)
S

(z), (52)

where f (n)
S

are the eigenfunctions of the mode equation
h
(�@z � 3A0(z)) @z + M2

S
e2A(z)

i
f (n)
S

= m2
S,n

f (n)
S

, (53)

where A(z) is the warp factor in the conformal coordinate line-element (see appendix A).
The full set of ‘t-Hooft-Feynman gauge tree-level diagrams for S(n1)S(n2) ! '(n3)'(n4) is depicted in Fig. 3, where

we use the double line to indicate all three possible gravity intermediate states h(i), A(i), and '(i). However, not
all intermediate states contribute at O(s) in the high energy limit. To calculate the scattering amplitudes of scalar
Goldstone bosons in the high energy limit, we only need to expand the Feynman rules to the leading order in momenta.
Since each interaction term in the Lagrangian can contain at most two 4-derivatives @µ, the relevant non-vanishing
Feynman rules at order O(E2) are given in Appendix B, where the vertices and terms below O(E2) have been
neglected: note that the contribution of the vector states A(i) is not relevant to this process at leading order.

Using the Feynman rules, we find the scattering amplitude at the leading order O(s) to be
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S

i + O(s0),

(54)

4For simplicity, we consider a model with no bulk potential or brane-localized scalar interactions.
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4For simplicity, we consider a model with no bulk potential or brane-localized scalar interactions.
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vanish once the sum-rules in Eq. (86) and (88) are applied.
Finally, similar to the behavior of brane scalars and fermions, the leading non-vanishing contribution to the ampli-

tudes are at O(s) for ��̄ = 00/±⌥, and at O(s1/2) for ��̄ = ±0/0±, and can be written as

fM(2)

00
=

2(cos 2✓ � 1)

96

h
f (n)(z̄)

i2
=

2(cos 2✓ � 1)

96

h
k(n)(z̄)

i2
, (112)

fM(2)

±⌥ =
2(cos 2✓ � 1)

32

h
f (n)(z̄)

i2
=

2(cos 2✓ � 1)

96

h
k(n)(z̄)

i2
, (113)

fM(1)

±0/0± = ⌥
2 sin 2✓

8
p
2

mV̄

h
f (n)(z̄)

i2
= ⌥

2 sin 2✓

8
p
2

mV̄

h
k(n)(z̄)

i2
, (114)

in a manner consistent with an equivalence theorem.

C. Bulk scalar

For the scattering of m-level KK scalar bosons to n-level KK gravitons, the non-trivial amplitude starts at O(s3),

fM(6) =
2

192m4
n

2

4(3 cos 2✓ + 5)
1X

j=0

�
aSnmj

�2
+ (cos 2✓ � 1)

1X

j=0

annja
S
jmm � 4(cos 2✓ + 1)aSnnmm

3

5 , (115)

which vanishes due to completeness of the graviton and scalar wavefunctions,
1X

j=0

�
aSnmj

�2
=

1X

j=0

annja
S
jmm = aSnnmm. (116)

At the order of O(s2), after applying the sum rule above, the amplitude at next order can be written as,

fM(4) =
2

192m4
n

8
<

:(5� cos 2✓)
1X

j=0

m2

jannja
S
jmm � 2m2

n(5� cos 2✓)aSnnmm

�2(cos 2✓ + 3)
1X

j=0

m2

S,j

�
aSnmj

�2
+ 2m2

S,m(cos 2✓ + 3)aSnnmm + 16bSn̄n̄mm

9
=

; .

(117)

One can use the eigenequations and the completeness relation to derive sum rules as
1X

j=0

m2

jannja
S
jmm = 2m2

na
S
nnmm � 2bSn̄n̄mm, (118)

1X

j=0

m2

S,j

�
aSnmj

�2
= m2

S,maSnnmm + bSn̄n̄mm. (119)

Once the above sum rules applied, the amplitude vanishes at this order,

fM(4) = 0. (120)

It is interesting to note that, unlike other cases, the cancellation of the bad high energy for the bulk scalar case does
not require the contribution from the radion, which only starts to appear at O(s).

The leading non-vanishing contribution to the amplitude starts at O(s). Applying all the previous sum rules, the
residual amplitude can be then written as,

fM(2) =
2

576m4
n

8
<

:24
1X

j=0

m4

S,j

�
aSnmj

�2
� (3 cos 2✓ + 1)

1X

j=0

m2

jannja
S
jmm

+
⇥
2(3 cos 2✓ + 1)m4

n + 16m2

nm
2

S,m � 24m4

S,m

⇤
aSnnmm

� 8
⇥
(3 cos 2✓ + 1)m2

n + 4m2

S,m

⇤
bSn̄n̄mm + 16m2

nm
2

S,mann0a
S
0mm

� 144bn̄n̄r

✓
bSm̄m̄r +

1

3
M2

Sa
MS
mmr

◆9=

; .

(121)

(Unitary gauge result arXiv: 2311.00770)
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and the longitudinal scattering amplitude can be expressed as

Th

µ⌫
✏µ⌫0 = T'

� i
p

3TA

µ
✏̃µ0 + Th

µ⌫
✏̃µ⌫0 . (33)

Note that there is no bad high energy behavior coming from the external polarization tensors or vectors on the right
hand side of Eq. (33); the second and third terms on the right hand side of Eq. (33) are relatively suppressed due to
the fact that ✏̃µ0 ⇠ O(m/E) and ✏̃µ⌫0 ⇠ O(m2/E2).

This expression confirms and extends the Goldstone boson Equivalence theorem given by Hang and He for lon-
gitudinal KK graviton scattering [18, 19], namely that the scattering amplitude of the longitudinally polarized KK
gravitons equals that of the scalar KK Goldstone boson in the high energy limit,

Th

µ⌫
✏µ⌫0 = T' + O(s0). (34)

Furthermore, our derivation of Eq. (33) demonstrates that the Equivalence theorem is valid for a warped internal
space and gives an explicit expression for the residual terms not captured by the leading-order expression.

Similarly, using the definitions of the helicity ±1 polarization tensors

✏µ⌫±1 =
1

p
2

�
✏µ±✏

⌫

0 + ✏µ0 ✏
⌫

±
�
, (35)

and using the decomposition of ✏µ0 given in Eq.(27) and applying the Ward identities, one finds the following identities
for helicity ±1 states,

Th

µ⌫
✏µ⌫±1 = �iTA

µ
✏µ± + Th

µ⌫
✏̃µ⌫±1, (36)

where

✏̃µ⌫±1 ⌘
1

p
2

�
✏µ±✏̃

⌫

0 + ✏̃µ0 ✏
⌫

±
�

⇠ O

⇣m
E

⌘
. (37)

Therefore, the Goldstone boson Equivalence theorem for the helicity ±1 states is: the scattering amplitude of the KK
gravitons with helicities ±1 equals that of the vector KK Goldstone boson in the high energy limit up to a overall
phase,

Th

µ⌫
✏µ⌫±1 = �iTA

µ
✏µ± + O(s0). (38)

While we have derived the above identities for one external KK graviton, one can easily generalize it to the case of
multiple external KK gravitons, by examining

hTF (n1)
µ/5 (x)F (n2)

⌫/5 (x) · · · �i = 0. (39)

By neglecting the subleading terms, we arrive at the Goldstone Equivalence theorem for the helicity-0 KK gravitons,

M

h
h(n1)
L

h(n2)
L

· · ·

i
= M

h
'(n1)'(n2) · · ·

i
+ O(s0), (40)

and for the helicity ±1 KK gravitons,

M

h
h(n1)
±1 h(n2)

±1 · · ·

i
= (�i)Nin(i)NoutM

h
A(n1)

± A(n2)
± · · ·

i
+ O(s0), (41)

where Nin (Nout) is the number of incoming (outgoing) helicity ±1 KK graviton states.
We also note that one can organize the above results into a more compact way by introducing 5D polarization

tensors as

✏̃MN

0 =

0

BB@
✏̃µ⌫0 �

r
1

6
⌘µ⌫ i

r
3

2
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i

r
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r
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3

1
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i
p

2
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1
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0
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✏µ⌫±2 0

0 0

1

CA , (42)

and

TMN =

0
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µ⌫
�

1
p

2
TA

µ

�
1

p
2
TA

⌫
�

1

2
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µ
�

r
3

2
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1

CCA , (43)
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Therefore, the Goldstone boson Equivalence theorem for the helicity ±1 states is: the scattering amplitude of the KK
gravitons with helicities ±1 equals that of the vector KK Goldstone boson in the high energy limit up to a overall
phase,
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µ⌫
✏µ⌫±1 = �iTA

µ
✏µ± + O(s0). (38)

While we have derived the above identities for one external KK graviton, one can easily generalize it to the case of
multiple external KK gravitons, by examining

hTF (n1)
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⌫/5 (x) · · · �i = 0. (39)

By neglecting the subleading terms, we arrive at the Goldstone Equivalence theorem for the helicity-0 KK gravitons,
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M

h
h(n1)
±1 h(n2)

±1 · · ·

i
= (�i)Nin(i)NoutM

h
A(n1)

± A(n2)
± · · ·

i
+ O(s0), (41)

where Nin (Nout) is the number of incoming (outgoing) helicity ±1 KK graviton states.
We also note that one can organize the above results into a more compact way by introducing 5D polarization

tensors as
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We conclude this section by commenting on the relationship of our results to the “double-copy” construction noted
in [18, 19]. Motivated by the “color-kinematic” duality relating gauge-theory and gravitational amplitudes [43–45],
Hang and He note that since the massive spin-2 helicity-0 amplitudes grow only like O(s) and since these leading
order amplitudes are KK mass-independent, color-kinematic duality (which is exact in the massless theory) should also
apply to the leading order in a compactified theory. Specifically, they demonstrate that an appropriate color-kinematic
duality can be used to relate the high-energy scattering amplitude of the longitudinal modes of spin-1 KK bosons
in a toroidally compactified five-dimensional gauge-theory to the high-energy scattering amplitudes of the helicity-0
modes of the corresponding spin-2 gravitational KK modes. Our result in Eq. (58) above shows how their analysis
generalizes to warped models: the kinematic factors remain precisely the same, but the couplings must be rescaled to
account for the overlap integrals which give the mode-couplings of the (gauge- and gravitational) Goldstone bosons
in the warped space.

While the results in this section demonstrate the validity of the Goldstone boson Equivalence theorems in Eqs. (54)
and (58), we can actually compute full amplitudes using Eqs. (33) and (36). We describe how to do so in the next
section.

V. A ROBUST METHOD OF COMPUTING SPIN-2 SCATTERING AMPLITUDES

A. Method

Studying the phenomenology of spin-2 gravitons requires the ability to reliably compute their scattering amplitudes.
This is a challenge when working with models in warped geometries, where evaluating the exact tree-level scattering
amplitudes in unitary gauge would technically require summing over an infinite number of intermediate KK states.

In practice, numerical computations of the helicity-0 spin-2 scattering amplitudes in unitary gauge are inherently
unstable. The overlap integrals of the wave-functions can only be evaluated with finite precision, and one can only sum
over a finite number of the intermediate KK states. These limitations introduce numerical errors which are amplified
at high energies: the sum rules enforcing the cancellations [21–23] are only precisely true if one evaluates the overlap
integrals exactly and sums over all possible intermediate states. These limitations of the numerical calculations
reintroduce errors which in unitary gauge grow like O(s5). Therefore, to evaluate amplitudes with su�cient accuracy
at high energies in unitary gauge, one must not only evaluate all the overlap integrals with great precision but also
sum over a large number of intermediate KK modes to keep the numerical errors under control [23].

However, the earlier results in this paper enable us to mitigate those issues and achieve robust computation of
spin-2 scattering amplitudes. Instead of using unitary gauge, one computes the amplitudes using ‘t-Hooft-Feynman
gauge and applies the Ward identities described above to rewrite any matrix elements involving problematic external
states as an appropriate combination of Goldstone boson amplitudes.

This approach addresses each of the sources of bad high energy behavior. On the one hand, all the internal
propagators in the ’t Hooft-Feynman gauge behave like 1/p2, eliminating the problematic high-energy behavior coming
from unitary gauge projection operators in the propagators. On the other hand, the Ward identities in Eqs. (33) and
(36) show that we can replace the matrix elements involving external helicity-0 and helicity-1 massive spin-2 states –
the states whose polarization tensors have potentially large high-energy behavior – by a combination of amplitudes
involving the corresponding Goldstone bosons and a residual “spin-2” polarization vector (✏̃µ⌫ in those equations)
whose behavior at high-energies is mild. Therefore, by combining these techniques, one can avoid the spurious high-
energy growth which occurs in unitary gauge; the scattering amplitudes will converge as fast as the overlap integrals
which determine the coupling among the various KK levels.

We will now illustrate this robust approach by applying it to analyze the full behavior of the scattering amplitudes
described using the Equivalence theorem in section IV. First, we consider the scattering of two KK scalar bosons into
a pair of KK gravitons. Applying Eqs.(33) and (36) we find the amplitude can be written as
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where the relative phases are defined as
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We conclude this section by commenting on the relationship of our results to the “double-copy” construction noted
in [18, 19]. Motivated by the “color-kinematic” duality relating gauge-theory and gravitational amplitudes [43–45],
Hang and He note that since the massive spin-2 helicity-0 amplitudes grow only like O(s) and since these leading
order amplitudes are KK mass-independent, color-kinematic duality (which is exact in the massless theory) should also
apply to the leading order in a compactified theory. Specifically, they demonstrate that an appropriate color-kinematic
duality can be used to relate the high-energy scattering amplitude of the longitudinal modes of spin-1 KK bosons
in a toroidally compactified five-dimensional gauge-theory to the high-energy scattering amplitudes of the helicity-0
modes of the corresponding spin-2 gravitational KK modes. Our result in Eq. (58) above shows how their analysis
generalizes to warped models: the kinematic factors remain precisely the same, but the couplings must be rescaled to
account for the overlap integrals which give the mode-couplings of the (gauge- and gravitational) Goldstone bosons
in the warped space.

While the results in this section demonstrate the validity of the Goldstone boson Equivalence theorems in Eqs. (54)
and (58), we can actually compute full amplitudes using Eqs. (33) and (36). We describe how to do so in the next
section.

V. A ROBUST METHOD OF COMPUTING SPIN-2 SCATTERING AMPLITUDES

A. Method

Studying the phenomenology of spin-2 gravitons requires the ability to reliably compute their scattering amplitudes.
This is a challenge when working with models in warped geometries, where evaluating the exact tree-level scattering
amplitudes in unitary gauge would technically require summing over an infinite number of intermediate KK states.

In practice, numerical computations of the helicity-0 spin-2 scattering amplitudes in unitary gauge are inherently
unstable. The overlap integrals of the wave-functions can only be evaluated with finite precision, and one can only sum
over a finite number of the intermediate KK states. These limitations introduce numerical errors which are amplified
at high energies: the sum rules enforcing the cancellations [21–23] are only precisely true if one evaluates the overlap
integrals exactly and sums over all possible intermediate states. These limitations of the numerical calculations
reintroduce errors which in unitary gauge grow like O(s5). Therefore, to evaluate amplitudes with su�cient accuracy
at high energies in unitary gauge, one must not only evaluate all the overlap integrals with great precision but also
sum over a large number of intermediate KK modes to keep the numerical errors under control [23].

However, the earlier results in this paper enable us to mitigate those issues and achieve robust computation of
spin-2 scattering amplitudes. Instead of using unitary gauge, one computes the amplitudes using ‘t-Hooft-Feynman
gauge and applies the Ward identities described above to rewrite any matrix elements involving problematic external
states as an appropriate combination of Goldstone boson amplitudes.

This approach addresses each of the sources of bad high energy behavior. On the one hand, all the internal
propagators in the ’t Hooft-Feynman gauge behave like 1/p2, eliminating the problematic high-energy behavior coming
from unitary gauge projection operators in the propagators. On the other hand, the Ward identities in Eqs. (33) and
(36) show that we can replace the matrix elements involving external helicity-0 and helicity-1 massive spin-2 states –
the states whose polarization tensors have potentially large high-energy behavior – by a combination of amplitudes
involving the corresponding Goldstone bosons and a residual “spin-2” polarization vector (✏̃µ⌫ in those equations)
whose behavior at high-energies is mild. Therefore, by combining these techniques, one can avoid the spurious high-
energy growth which occurs in unitary gauge; the scattering amplitudes will converge as fast as the overlap integrals
which determine the coupling among the various KK levels.

We will now illustrate this robust approach by applying it to analyze the full behavior of the scattering amplitudes
described using the Equivalence theorem in section IV. First, we consider the scattering of two KK scalar bosons into
a pair of KK gravitons. Applying Eqs.(33) and (36) we find the amplitude can be written as
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We conclude this section by commenting on the relationship of our results to the “double-copy” construction noted
in [18, 19]. Motivated by the “color-kinematic” duality relating gauge-theory and gravitational amplitudes [43–45],
Hang and He note that since the massive spin-2 helicity-0 amplitudes grow only like O(s) and since these leading
order amplitudes are KK mass-independent, color-kinematic duality (which is exact in the massless theory) should also
apply to the leading order in a compactified theory. Specifically, they demonstrate that an appropriate color-kinematic
duality can be used to relate the high-energy scattering amplitude of the longitudinal modes of spin-1 KK bosons
in a toroidally compactified five-dimensional gauge-theory to the high-energy scattering amplitudes of the helicity-0
modes of the corresponding spin-2 gravitational KK modes. Our result in Eq. (58) above shows how their analysis
generalizes to warped models: the kinematic factors remain precisely the same, but the couplings must be rescaled to
account for the overlap integrals which give the mode-couplings of the (gauge- and gravitational) Goldstone bosons
in the warped space.

While the results in this section demonstrate the validity of the Goldstone boson Equivalence theorems in Eqs. (54)
and (58), we can actually compute full amplitudes using Eqs. (33) and (36). We describe how to do so in the next
section.

V. A ROBUST METHOD OF COMPUTING SPIN-2 SCATTERING AMPLITUDES

A. Method

Studying the phenomenology of spin-2 gravitons requires the ability to reliably compute their scattering amplitudes.
This is a challenge when working with models in warped geometries, where evaluating the exact tree-level scattering
amplitudes in unitary gauge would technically require summing over an infinite number of intermediate KK states.

In practice, numerical computations of the helicity-0 spin-2 scattering amplitudes in unitary gauge are inherently
unstable. The overlap integrals of the wave-functions can only be evaluated with finite precision, and one can only sum
over a finite number of the intermediate KK states. These limitations introduce numerical errors which are amplified
at high energies: the sum rules enforcing the cancellations [21–23] are only precisely true if one evaluates the overlap
integrals exactly and sums over all possible intermediate states. These limitations of the numerical calculations
reintroduce errors which in unitary gauge grow like O(s5). Therefore, to evaluate amplitudes with su�cient accuracy
at high energies in unitary gauge, one must not only evaluate all the overlap integrals with great precision but also
sum over a large number of intermediate KK modes to keep the numerical errors under control [23].

However, the earlier results in this paper enable us to mitigate those issues and achieve robust computation of
spin-2 scattering amplitudes. Instead of using unitary gauge, one computes the amplitudes using ‘t-Hooft-Feynman
gauge and applies the Ward identities described above to rewrite any matrix elements involving problematic external
states as an appropriate combination of Goldstone boson amplitudes.

This approach addresses each of the sources of bad high energy behavior. On the one hand, all the internal
propagators in the ’t Hooft-Feynman gauge behave like 1/p2, eliminating the problematic high-energy behavior coming
from unitary gauge projection operators in the propagators. On the other hand, the Ward identities in Eqs. (33) and
(36) show that we can replace the matrix elements involving external helicity-0 and helicity-1 massive spin-2 states –
the states whose polarization tensors have potentially large high-energy behavior – by a combination of amplitudes
involving the corresponding Goldstone bosons and a residual “spin-2” polarization vector (✏̃µ⌫ in those equations)
whose behavior at high-energies is mild. Therefore, by combining these techniques, one can avoid the spurious high-
energy growth which occurs in unitary gauge; the scattering amplitudes will converge as fast as the overlap integrals
which determine the coupling among the various KK levels.

We will now illustrate this robust approach by applying it to analyze the full behavior of the scattering amplitudes
described using the Equivalence theorem in section IV. First, we consider the scattering of two KK scalar bosons into
a pair of KK gravitons. Applying Eqs.(33) and (36) we find the amplitude can be written as
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We conclude this section by commenting on the relationship of our results to the “double-copy” construction noted
in [18, 19]. Motivated by the “color-kinematic” duality relating gauge-theory and gravitational amplitudes [43–45],
Hang and He note that since the massive spin-2 helicity-0 amplitudes grow only like O(s) and since these leading
order amplitudes are KK mass-independent, color-kinematic duality (which is exact in the massless theory) should also
apply to the leading order in a compactified theory. Specifically, they demonstrate that an appropriate color-kinematic
duality can be used to relate the high-energy scattering amplitude of the longitudinal modes of spin-1 KK bosons
in a toroidally compactified five-dimensional gauge-theory to the high-energy scattering amplitudes of the helicity-0
modes of the corresponding spin-2 gravitational KK modes. Our result in Eq. (58) above shows how their analysis
generalizes to warped models: the kinematic factors remain precisely the same, but the couplings must be rescaled to
account for the overlap integrals which give the mode-couplings of the (gauge- and gravitational) Goldstone bosons
in the warped space.

While the results in this section demonstrate the validity of the Goldstone boson Equivalence theorems in Eqs. (54)
and (58), we can actually compute full amplitudes using Eqs. (33) and (36). We describe how to do so in the next
section.

V. A ROBUST METHOD OF COMPUTING SPIN-2 SCATTERING AMPLITUDES

A. Method

Studying the phenomenology of spin-2 gravitons requires the ability to reliably compute their scattering amplitudes.
This is a challenge when working with models in warped geometries, where evaluating the exact tree-level scattering
amplitudes in unitary gauge would technically require summing over an infinite number of intermediate KK states.

In practice, numerical computations of the helicity-0 spin-2 scattering amplitudes in unitary gauge are inherently
unstable. The overlap integrals of the wave-functions can only be evaluated with finite precision, and one can only sum
over a finite number of the intermediate KK states. These limitations introduce numerical errors which are amplified
at high energies: the sum rules enforcing the cancellations [21–23] are only precisely true if one evaluates the overlap
integrals exactly and sums over all possible intermediate states. These limitations of the numerical calculations
reintroduce errors which in unitary gauge grow like O(s5). Therefore, to evaluate amplitudes with su�cient accuracy
at high energies in unitary gauge, one must not only evaluate all the overlap integrals with great precision but also
sum over a large number of intermediate KK modes to keep the numerical errors under control [23].
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which determine the coupling among the various KK levels.

We will now illustrate this robust approach by applying it to analyze the full behavior of the scattering amplitudes
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We conclude this section by commenting on the relationship of our results to the “double-copy” construction noted
in [18, 19]. Motivated by the “color-kinematic” duality relating gauge-theory and gravitational amplitudes [43–45],
Hang and He note that since the massive spin-2 helicity-0 amplitudes grow only like O(s) and since these leading
order amplitudes are KK mass-independent, color-kinematic duality (which is exact in the massless theory) should also
apply to the leading order in a compactified theory. Specifically, they demonstrate that an appropriate color-kinematic
duality can be used to relate the high-energy scattering amplitude of the longitudinal modes of spin-1 KK bosons
in a toroidally compactified five-dimensional gauge-theory to the high-energy scattering amplitudes of the helicity-0
modes of the corresponding spin-2 gravitational KK modes. Our result in Eq. (58) above shows how their analysis
generalizes to warped models: the kinematic factors remain precisely the same, but the couplings must be rescaled to
account for the overlap integrals which give the mode-couplings of the (gauge- and gravitational) Goldstone bosons
in the warped space.

While the results in this section demonstrate the validity of the Goldstone boson Equivalence theorems in Eqs. (54)
and (58), we can actually compute full amplitudes using Eqs. (33) and (36). We describe how to do so in the next
section.

V. A ROBUST METHOD OF COMPUTING SPIN-2 SCATTERING AMPLITUDES

A. Method

Studying the phenomenology of spin-2 gravitons requires the ability to reliably compute their scattering amplitudes.
This is a challenge when working with models in warped geometries, where evaluating the exact tree-level scattering
amplitudes in unitary gauge would technically require summing over an infinite number of intermediate KK states.

In practice, numerical computations of the helicity-0 spin-2 scattering amplitudes in unitary gauge are inherently
unstable. The overlap integrals of the wave-functions can only be evaluated with finite precision, and one can only sum
over a finite number of the intermediate KK states. These limitations introduce numerical errors which are amplified
at high energies: the sum rules enforcing the cancellations [21–23] are only precisely true if one evaluates the overlap
integrals exactly and sums over all possible intermediate states. These limitations of the numerical calculations
reintroduce errors which in unitary gauge grow like O(s5). Therefore, to evaluate amplitudes with su�cient accuracy
at high energies in unitary gauge, one must not only evaluate all the overlap integrals with great precision but also
sum over a large number of intermediate KK modes to keep the numerical errors under control [23].

However, the earlier results in this paper enable us to mitigate those issues and achieve robust computation of
spin-2 scattering amplitudes. Instead of using unitary gauge, one computes the amplitudes using ‘t-Hooft-Feynman
gauge and applies the Ward identities described above to rewrite any matrix elements involving problematic external
states as an appropriate combination of Goldstone boson amplitudes.

This approach addresses each of the sources of bad high energy behavior. On the one hand, all the internal
propagators in the ’t Hooft-Feynman gauge behave like 1/p2, eliminating the problematic high-energy behavior coming
from unitary gauge projection operators in the propagators. On the other hand, the Ward identities in Eqs. (33) and
(36) show that we can replace the matrix elements involving external helicity-0 and helicity-1 massive spin-2 states –
the states whose polarization tensors have potentially large high-energy behavior – by a combination of amplitudes
involving the corresponding Goldstone bosons and a residual “spin-2” polarization vector (✏̃µ⌫ in those equations)
whose behavior at high-energies is mild. Therefore, by combining these techniques, one can avoid the spurious high-
energy growth which occurs in unitary gauge; the scattering amplitudes will converge as fast as the overlap integrals
which determine the coupling among the various KK levels.

We will now illustrate this robust approach by applying it to analyze the full behavior of the scattering amplitudes
described using the Equivalence theorem in section IV. First, we consider the scattering of two KK scalar bosons into
a pair of KK gravitons. Applying Eqs.(33) and (36) we find the amplitude can be written as
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from unitary gauge projection operators in the propagators. On the other hand, the Ward identities in Eqs. (33) and
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the states whose polarization tensors have potentially large high-energy behavior – by a combination of amplitudes
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whose behavior at high-energies is mild. Therefore, by combining these techniques, one can avoid the spurious high-
energy growth which occurs in unitary gauge; the scattering amplitudes will converge as fast as the overlap integrals
which determine the coupling among the various KK levels.

We will now illustrate this robust approach by applying it to analyze the full behavior of the scattering amplitudes
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boson Equivalence theorem in Eq. (54); this involves keeping only the O(s) contribution, so the resulting accuracy is
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We note that, while the truncation error does converge as fast as the overlap integrals when one uses ’t-Hooft-
Feynman gauge and the Ward identities, di↵erent overlap integrals may converge at di↵erent rates. Such variance
in convergence can lead to cases at intermediate scattering energies (upper panels) and small truncation error values
(i.e., large enough Ncut�o↵) where the unitary gauge computation yields a truncation error equal to or smaller than
the result of our robust method. For example, as shown in upper right panel in Fig. 6, the unitary gauge result (blue)
and the ’t-Hooft-Feynman gauge result (red) intersect at Ncut-o↵ ⇠ 6, and the unitary gauge computation errors drop
faster after that point when including more intermediate states. One should notice, however, that the errors in both
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panels). As shown by the red lines computed using our robust method (Eq. (60) and (63)), the number of included
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green line appears only at high energy for large krc.
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• If only a finite number of intermediate KK states are included
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• QM SUSY ensures that KK gravitons and their 
corresponding Goldstone modes have degenerate 
spectra.

• Transparent power-counting in Feynman gauge
• The scattering amplitudes of the longitudinal KK 

gravitons equal those of the Goldstone bosons at O(s), 
for torus, RS, and GW models.

• Ward identities allow us to exactly compute the 
amplitudes without large cancellation
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we discuss later, the presence of the brane potential terms lead to non-trivial boundary conditions
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6 The first equation, which is a convenient Einstein equation to use since it is independent of the bulk potential V ,

follows from the second two equations via the Bianchi identity.
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FIG. 1. Schematic Feynman diagrams involving one external KK graviton, one KK vector Goldstone boson, or one KK scalar
Goldstone boson.

where � denotes any other on-shell physical fields after the Lehmann-Symanzik-Zimmermann (LSZ) amputation.
Plugging in the gauge fixing condition in Eqs. (9) and (10), we have the following identities for the time-ordered
Green’s functions
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Because of the mass degeneracy of hn

µ⌫
, An

µ
and 'n, we can amputate these external states at the same time by

multiplying by (�⇤ � m2
n
).

Now consider the processes shown in Fig. 1, whose scattering amplitudes, M, can be written, respectively, as

M
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where the ✏µ⌫ and ✏µ are the polarization vectors of the external spin-2 and spin-1 particles. Note that the sub-
amplitudes Th
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, TA

µ
and T' are related to the corresponding Green’s functions by LSZ amputation,
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Assuming the momentum is incoming, one derives the following Ward identities,
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Note that the derivation of the Ward identities above only relies on the gauge fixing conditions in Eqs. (9) and
(10), and will work in any geometry in which these gauge-fixing conditions can be applied. In particular, the same
conditions apply in toroidal compactifications [18, 19], and we discuss the generalization to the GW model in Sec. IV.
We note that the identity will also work if the KK graviton is o↵-shell.

We use these Ward identities to formulate the Goldstone boson Equivalence theorems in the next section.

III. THE GOLDSTONE BOSON EQUIVALENCE THEOREM IN RS1

In this section we will use the Ward Identities in Eqs. (18) and (19) to relate amplitudes with one or more helicity-0 or
helicity-1 external states with the corresponding Goldstone boson amplitudes in the RS1 model. For the longitudinally

Polarization Tensors and Ward Identities
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the external polarization tensors. In section IV, we demonstrate the GRET using two explicit examples: (a) the scat-
tering of two KK bulk scalar into two KK gravitons and (b) the scattering of two KK gravitons into two KK gravitons,
and we comment on the connection between our results and the double-copy construction suggested by [18, 19]. In sec-
tion V, we propose a novel method to compute the exact scattering amplitudes involving longitudinally polarized KK
gravitons that is free of large cancellations, and demonstrate its better convergence when only a finite number of inter-
mediate KK states are included, in comparison with the traditional computation in the unitary gauge. We conclude
in section VI with a discussion of the generality of our results and other questions to be addressed by future work. Ap-
pendix A outlines our notation, while appendix B gives the ‘t-Hooft-Feynman gauge Feynman rules needed for the com-
putations in section V. Lastly, in appendix C we derive the symmetry algebra of the residual 5D di↵eomorphisms of a
Randall-Sundrum extra-dimensional theory, extending the results of Du↵ and Dolan [33] for toroidal compactifications.

II. RS1 WARD IDENTITIES FOR KK GRAVITONS

In the 5D RS1 model [24, 25], an orbifolded slice of AdS5, the gravitational fields can be decomposed into towers
of KK four-dimensional modes [17],
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where h(0)
µ⌫ is the massless graviton field, h(n>0)

µ⌫ are the massive KK spin-2 fields, A(n>0)
µ are the massive KK vector

Goldstone fields, '(0) is the radion field, and '(n>0) are the massive KK scalar Goldstone fields. Here z1  z  z2
is the internal compact coordinate, z1,2 are the locations of the orbifold fixed points, and the mode wavefunctions
f (n)(z), g(n)(z), and k(n)(z) (which are respectively even, odd, and even under orbifold parity) are determined by
the geometry of the internal space. A brief description of our conventions is given in Appendix A and details can be
found in [17] and references therein.

The quadratic terms of Lagragian of the graviton sector are then given by,
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Crucially [15, 16], the wave equations for these modes of di↵erent spin are related by a pair of N = 2 quantum-
mechanical SUSY symmetries that enforce the degeneracy of the non-zero mass modes of these di↵erent spins, a
situation that also holds in the case of a stabilized extra dimension [17], and hence the inverse propagators are given by
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. (7)

In addition, the degeneracy of these di↵erent modes allows one to adopt a ’t Hooft-Feynman gauge for gravity [15, 16]
with a warped internal dimension, ( here h(n)
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From the gauge fixing condition, one can derive the Ward identities [18, 39] for the time-ordered matrix elements

hTF (n)
µ

(x)�i = hTF (n)
5 (x)�i = 0, (11)

• KK decomposed gauge fixing terms in Feynman gauge are

• Ward identities can be derived by
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and the longitudinal scattering amplitude can be expressed as

Th

µ⌫
✏µ⌫0 = T'

� i
p

3TA

µ
✏̃µ0 + Th

µ⌫
✏̃µ⌫0 . (33)

Note that there is no bad high energy behavior coming from the external polarization tensors or vectors on the right
hand side of Eq. (33); the second and third terms on the right hand side of Eq. (33) are relatively suppressed due to
the fact that ✏̃µ0 ⇠ O(m/E) and ✏̃µ⌫0 ⇠ O(m2/E2).

This expression confirms and extends the Goldstone boson Equivalence theorem given by Hang and He for lon-
gitudinal KK graviton scattering [18, 19], namely that the scattering amplitude of the longitudinally polarized KK
gravitons equals that of the scalar KK Goldstone boson in the high energy limit,

Th

µ⌫
✏µ⌫0 = T' + O(s0). (34)

Furthermore, our derivation of Eq. (33) demonstrates that the Equivalence theorem is valid for a warped internal
space and gives an explicit expression for the residual terms not captured by the leading-order expression.

Similarly, using the definitions of the helicity ±1 polarization tensors

✏µ⌫±1 =
1

p
2

�
✏µ±✏

⌫

0 + ✏µ0 ✏
⌫

±
�
, (35)

and using the decomposition of ✏µ0 given in Eq.(27) and applying the Ward identities, one finds the following identities
for helicity ±1 states,

Th

µ⌫
✏µ⌫±1 = �iTA

µ
✏µ± + Th

µ⌫
✏̃µ⌫±1, (36)

where
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1

p
2

�
✏µ±✏̃

⌫

0 + ✏̃µ0 ✏
⌫

±
�

⇠ O

⇣m
E

⌘
. (37)

Therefore, the Goldstone boson Equivalence theorem for the helicity ±1 states is: the scattering amplitude of the KK
gravitons with helicities ±1 equals that of the vector KK Goldstone boson in the high energy limit up to a overall
phase,

Th

µ⌫
✏µ⌫±1 = �iTA

µ
✏µ± + O(s0). (38)

While we have derived the above identities for one external KK graviton, one can easily generalize it to the case of
multiple external KK gravitons, by examining

hTF (n1)
µ/5 (x)F (n2)

⌫/5 (x) · · · �i = 0. (39)

By neglecting the subleading terms, we arrive at the Goldstone Equivalence theorem for the helicity-0 KK gravitons,

M

h
h(n1)
L

h(n2)
L

· · ·

i
= M

h
'(n1)'(n2) · · ·

i
+ O(s0), (40)

and for the helicity ±1 KK gravitons,

M

h
h(n1)
±1 h(n2)

±1 · · ·

i
= (�i)Nin(i)NoutM

h
A(n1)

± A(n2)
± · · ·

i
+ O(s0), (41)

where Nin (Nout) is the number of incoming (outgoing) helicity ±1 KK graviton states.
We also note that one can organize the above results into a more compact way by introducing 5D polarization

tensors as
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6
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2
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1

CCA , (43)
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We conclude this section by commenting on the relationship of our results to the “double-copy” construction noted
in [18, 19]. Motivated by the “color-kinematic” duality relating gauge-theory and gravitational amplitudes [43–45],
Hang and He note that since the massive spin-2 helicity-0 amplitudes grow only like O(s) and since these leading
order amplitudes are KK mass-independent, color-kinematic duality (which is exact in the massless theory) should also
apply to the leading order in a compactified theory. Specifically, they demonstrate that an appropriate color-kinematic
duality can be used to relate the high-energy scattering amplitude of the longitudinal modes of spin-1 KK bosons
in a toroidally compactified five-dimensional gauge-theory to the high-energy scattering amplitudes of the helicity-0
modes of the corresponding spin-2 gravitational KK modes. Our result in Eq. (58) above shows how their analysis
generalizes to warped models: the kinematic factors remain precisely the same, but the couplings must be rescaled to
account for the overlap integrals which give the mode-couplings of the (gauge- and gravitational) Goldstone bosons
in the warped space.

While the results in this section demonstrate the validity of the Goldstone boson Equivalence theorems in Eqs. (54)
and (58), we can actually compute full amplitudes using Eqs. (33) and (36). We describe how to do so in the next
section.

V. A ROBUST METHOD OF COMPUTING SPIN-2 SCATTERING AMPLITUDES

A. Method

Studying the phenomenology of spin-2 gravitons requires the ability to reliably compute their scattering amplitudes.
This is a challenge when working with models in warped geometries, where evaluating the exact tree-level scattering
amplitudes in unitary gauge would technically require summing over an infinite number of intermediate KK states.

In practice, numerical computations of the helicity-0 spin-2 scattering amplitudes in unitary gauge are inherently
unstable. The overlap integrals of the wave-functions can only be evaluated with finite precision, and one can only sum
over a finite number of the intermediate KK states. These limitations introduce numerical errors which are amplified
at high energies: the sum rules enforcing the cancellations [21–23] are only precisely true if one evaluates the overlap
integrals exactly and sums over all possible intermediate states. These limitations of the numerical calculations
reintroduce errors which in unitary gauge grow like O(s5). Therefore, to evaluate amplitudes with su�cient accuracy
at high energies in unitary gauge, one must not only evaluate all the overlap integrals with great precision but also
sum over a large number of intermediate KK modes to keep the numerical errors under control [23].

However, the earlier results in this paper enable us to mitigate those issues and achieve robust computation of
spin-2 scattering amplitudes. Instead of using unitary gauge, one computes the amplitudes using ‘t-Hooft-Feynman
gauge and applies the Ward identities described above to rewrite any matrix elements involving problematic external
states as an appropriate combination of Goldstone boson amplitudes.

This approach addresses each of the sources of bad high energy behavior. On the one hand, all the internal
propagators in the ’t Hooft-Feynman gauge behave like 1/p2, eliminating the problematic high-energy behavior coming
from unitary gauge projection operators in the propagators. On the other hand, the Ward identities in Eqs. (33) and
(36) show that we can replace the matrix elements involving external helicity-0 and helicity-1 massive spin-2 states –
the states whose polarization tensors have potentially large high-energy behavior – by a combination of amplitudes
involving the corresponding Goldstone bosons and a residual “spin-2” polarization vector (✏̃µ⌫ in those equations)
whose behavior at high-energies is mild. Therefore, by combining these techniques, one can avoid the spurious high-
energy growth which occurs in unitary gauge; the scattering amplitudes will converge as fast as the overlap integrals
which determine the coupling among the various KK levels.

We will now illustrate this robust approach by applying it to analyze the full behavior of the scattering amplitudes
described using the Equivalence theorem in section IV. First, we consider the scattering of two KK scalar bosons into
a pair of KK gravitons. Applying Eqs.(33) and (36) we find the amplitude can be written as

M

h
S(n1)S(n2) ! h(n3)

�3
h(n4)
�4

i
=

X

Fi=�,A,h

 
4Y

i=3

⇣⇤
�i

(Fi)

!
M

h
S(n1)S(n2) ! F

(n3)
3,�3

F
(n4)
4,�4

i
(60)

where the relative phases are defined as

⇣�(�) =

(
1 � = 0

0 else
, ⇣�(A) =

8
><

>:

�i
p

3 � = 0

�i � = ±1

0 else

, ⇣�(h) = 1. (61)
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Each field Fi on the right hand side of Eq. (60) represents Fi = �, A, h, where � is the scalar Goldstone boson,
Aµ

�
is the vector Goldstone boson with (unphysical) polarization ✏̃µ

�
, and hµ⌫

�
is the KK graviton with (unphysical)

polarization ✏̃µ⌫
�

,

✏̃µ
�

=

(
✏µ
�

� = ±

✏̃µ0 � = 0
, ✏̃µ⌫

�
=

(
✏µ⌫
�

� = ±2

✏̃µ⌫
�

else
. (62)

Similarly, the scattering amplitude of two KK gravitons into a pair of KK gravitons is given by

M
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i
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F
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! F
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3,�3

F
(n4)
4,�4

i
. (63)

Again, we emphasize that the analyses leading to Eqs. (60) and (63) hold for any background geometry, as long as
the ’t Hooft-Feynman in Eq. (8) exists and Eqs.(33) and (36) are true. However the details of the model can e↵ect
the couplings of the Goldstone bosons and therefore the Goldstone boson matrix elements themselves.

Next, we illustrate the numerical e�cacy of using ‘t-Hooft-Feynman gauge and the Ward identities for these two
amplitudes in RS1 where, due to the absence of the discrete momentum conservation present in toroidal models, the
exact tree-level scattering amplitudes require summing over an infinite number of intermediate KK states. We set
the numerical accuracy of our computation to be high (50 significant figures), to isolate and expose the issues arising
from truncation error. The RS1 geometry is specified by the AdS curvature k and “compactification radius” rc, where
k⇡rc = log(z2/z1), and the mode functions and overlap integrals depend only on the combination krc.

Following [23], we define the error due to truncating the sum over intermediate states at level N by

�trunc(N, krc, s) =

�����
M[N ](krc, s)

M(krc, s)
� 1

����� , (64)

where M
[N ] is the scattering amplitude that only includes up to N modes for intermediate KK states, and M is the

exact scattering amplitude which we approximate using M ' M
[100] computed via Eq. (60) or Eq. (63) in this work.

In general, the scattering amplitudes could have di↵erent angular dependence at di↵erent truncation N and di↵erent
energies. To be representative, we average the scattering amplitudes over di↵erent values of the polar angle ✓ 5,

M =
1

9

9X

j=1

M(✓ = j⇡/10). (65)

Note that we have excluded the forward and backward region, ✓ < ⇡/10 and ✓ > 9⇡/10, to avoid potential infrared
divergences in the presence of massless intermediate particles in the t and u channels.

B. Results

We are now ready to discuss the results of our computations. Figures 5 and 6 display the relationship between
truncation error and the number of included intermediate KK modes, while Figure 7 illustrates the interplay between
the number of intermediate states and the scattering energy in achieving a given level of computational precision.

Figure 5 shows the truncation error as a function of the number of included KK modes Ncut-o↵ for the scattering of

a pair of level-1 KK scalars into a pair of longitudinal level-1 KK gravitons S(1)S(1)
! h(1)

L
h(1)
L

. We have chosen two
di↵erent benchmark models with di↵erent warping, krc = 0.1 (left column) and krc = 10 (right column), analyzed
at two di↵erent scattering energies,

p
s = 10m1 (upper panels) and

p
s = 100m1 (lower panels). For simplicity, we

have set the Lagrangian mass of the bulk scalar to be MS = 0, such that the KK scalars and the gravitons have the
same masses, mS,n = mn. The red lines are computed using the robust method from this paper involving ‘t-Hooft-
Feynman gauge and the Ward identities, Eq. (60). This method clearly converges much faster as Ncut-o↵ increases
than computation in unitary gauge (blue lines), and the benefit is more pronounced for higher scattering energies
(lower panels). For purposes of comparison, we also show (green lines) the results obtained when using the Goldstone

5While such average is a reasonable approach to estimate the errors on the cross section, it does not guarantee the accuracy of the angular
distribution.

• Ward identities also tells us what the subleading terms are
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Appendix C: Symmetry algebra of the residual RS1 5D di↵eomorphisms

Following the exposition of Du↵ and Dolan in Ref. [33], we can explicitly identify the residual discrete 5D di↵eomor-
phism symmetries that are preserved in our compactified warped model. The infinitesimal coordinate transformation
parameter ⇠M (�xµ = ⇠µ and �z = ⇠5) can be expanded,

⇠µ(x, z) =
X

n

f (n)(z) ⇠µ
n
(x), (C1)

⇠5(x, z) =
X

n

g(n)(z) ⇠5
n
(x), (C2)

where the functions f (n)(z) and g(n)(z) are precisely the eigenfunctions that appear in the expansions of the KK
tensor and vector modes in Eqs. (1) and (2). Note that the functions g(n)(z) start with n = 1 and are chosen to
vanish at the boundaries (⇠M (z1,2) = 0) of RS1 so that the coordinate transformations do not change the location of
the branes.

As emphasized in [33], ordinary 5D general coordinate transformations in flat space can be regarded as the local
gauge transformations that correspond to the corresponding global Poincare algebra,

⇠µ
n

= an
µ + !n

µ
⌫x

⌫ , (C3)

⇠5
n

= cn. (C4)

Therefore, the generators corresponding to the residual transformations in Eqs. (C1) and (C2) are

Pµ

n
= f (n)@µ, (C5)

Mµ⌫

n
= f (n)(x⌫@µ

� xµ@⌫), (C6)

Qn = g(n)@z. (C7)

These generators define the following infinite parameter Lie algebra
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In the last expressions, which require evaluating derivatives of the mode functions, we use the SUSY structure of the
mode eigenequations [15–17]. Note that the masses of the eigenmodes mn and the overlap integrals defined by Eq. (55)
appear in the structure-constants of this algebra. As in the case of toroidal compactification [33], the symmetries with

n � 1 are spontaneously broken giving rise to the (space-time) Goldstone bosons A(n)
µ and '(n) which are “eaten” by

the corresponding spin-2 modes. h(0)
µ⌫ is the massless 4D graviton, and there is no broken symmetry corresponding to

the radion, '(0). The radion can be given a mass via the Goldberger-Wise mechanism [28, 29] while still respecting a
residual 5D di↵eomorphism invariance [17].

In the case of toroidal compactification, where the internal wavefunctions are simple trigonometric functions and
which has a discrete momentum conservation corresponding to discrete global translations in the extra dimension,
the above algebra reduces to the Kac-Moody algebra in Ref. [33].
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