

Search for new resonances decaying to pairs of merged diphotons in proton-proton collisions at 13 TeV

<u>Steven Clark</u>¹, Eva Halkiadakis¹, Marc Osherson², Scott Thomas¹ On behalf of the CMS Collaboration

¹Rutgers University ²University of Notre Dame

May 13, 2024

Motivation: $X \rightarrow \phi \phi \rightarrow (\gamma \gamma) (\gamma \gamma)$

- X is higgs-like and ϕ is pseudo-goldstone boson or axion-like particle:
 - Loop production of X with cross-section depending on what's in the loop
- Search for resonant production of pairs of <u>merging</u> photons
- Analysis Regime:
 - $300 \text{ GeV} < M_{\chi} < 3000 \text{ GeV}$ Ο
 - $0.005 < \alpha < 0.025, \ \alpha = M_{\phi} / M_{X}$ Ο
 - Barrel Only Ο

- Submitted to PRL (arXiv:2405.00834)
- Extends search to mass regions inaccessible by the boosted (bb)(bb) search (PLB / arXiv:2203.00480)
- Similar final state and techniques to $H \rightarrow AA \rightarrow$ Merged Diphotons (PRL / arXiv:2209.06197)

Merged Diphoton **Reconstruction** requires new analysis tools (ML)

Diphoton Object

- Analysis utilizes custom '*diphoton clusters*'
 - Images made from ECal detector information
- Cluster images are then fed into two Convolutional Neural Networks:
 - **Classification NN** *selects* diphotons from monophoton and hadronic background
 - **Regression NN** predicts mass of the diphoton
 - $\mathbf{m}_{\mathbf{r}} \equiv \text{diphoton cluster mass}$

- Combine clusters to get the **Di-Cluster mass**, **M**_{*IT*}, i.e. reconstructed X or four-photon mass
- Final search is a bump hunt in M_{IT}

Classification CNN

- Convolutional Neural Net for diphoton (Γ) classification, <u>background rejection</u>
- Classifies images of clusters as Monophoton, Diphoton, or Hadron
- CNN assigns a probability of belonging to each class: $P_{\gamma} + P_{\gamma\gamma} + P_{had} = 1$

Mass Regression CNN

- Now we need the mass of the particle which produced the cluster
- Separate CNN estimates the mass-to-energy ratio of the object based on the image
 - M = (Regressed M/E) x (Measured Energy)
- Trained over a flat sample of M/E to avoid bias; endpoints beyond the scope of our analysis to avoid edge-effects

Predicted vs. True M/E in Signal MC

Strong agreement in validation, but how do we know it'll work in data?

Eta meson reconstruction in data & MC

- Reconstruct $\eta \rightarrow \gamma \gamma$ decays (inside jets) to validate analysis tools
- Event Selection:
 - \circ 30 < E_{Γ} < 60 GeV
 - $\circ \quad |\eta_{\Gamma}| < 1.4$
 - 0.5 < Isolation< 1
 - $P_{\gamma\gamma} > 0.9$ for pass, otherwise fail
- Simultaneous fits of pass/fail η peaks allows for Data/MC comparison
- η peak fit with Gaussian, bkg fit with exponential
- Derive systematics:
 - Classification efficiency: 10% per Γ
 - \circ α^{reco} shape: 23% (dominant uncertainty)

Parameter	Data	GJets MC
μ	0.5384 ± 0.0001	0.5480 ± 0.0127
σ	0.0403 ± 0.0001	0.0496 ± 0.0113

 m_{η}^{true} = 0.5479 GeV

Analysis Strategy

- Final search is a bump hunt in data Di-Cluster mass distribution (**M**_{*rr*})
- Data is binned in <u>fixed slices</u> of α^{reco}
 - $\circ \quad \boldsymbol{\alpha}^{reco} = \mathbf{\hat{m}}_{\boldsymbol{\Gamma}} / \mathbf{M}_{\boldsymbol{\Gamma}\boldsymbol{\Gamma}}$
- Fit falling data spectrum in each α^{reco} slice
- Optimized final event selection:

Variable	Requirement
p _T	> 90 GeV
Mass Asymmetry	< 0.25
$ \Delta\eta $	< 1.5
$P_{\gamma\gamma}$	> 0.9
Isolation	> 0.8

Mass Asym. = $|\mathbf{M}_{\Gamma 1} - \mathbf{M}_{\Gamma 2}| / (\mathbf{M}_{\Gamma 1} + \mathbf{M}_{\Gamma 2})$ $|\Delta \eta| = |\eta_{\Gamma 1} - \eta_{\Gamma 2}|$ $\mathbf{P}_{\gamma \gamma} = \text{Classifier Diphoton Score}$ Isolation = E_I/E_(Nearest AK4 Jet) Iso = 1 when no other activity present

Results

- 95% CL limits on production cross section
- Calculated in slices of α, as a function of m_x
- Limits range between 0.03-1.6 fb
- Cross section depends on model parameters m_xN/f

Results

- Strongest limits on this process at the LHC!
 - Limits range between 0.03-1.6 fb for X masses between 0.3-3 TeV and α between 0.5%-2.5%
 - Results: <u>https://cms-results.web.cern.ch/cms-results/public-re</u> <u>sults/publications/EXO-22-022/</u>

Event display from data diphoton event!

Conclusion

- Search for $X \rightarrow \phi \phi \rightarrow (\gamma \gamma) (\gamma \gamma)$ with boosted diphotons
 - Diphoton Clusters containing two merged photons are formed from ECAL energy deposits
 - Classification Neural Network is used to identify diphoton clusters from background events
 - Regression NN predicts the mass of the diphoton clusters, M_{Γ}
 - The final search is conducted as a bump hunt in Di-Cluster Mass, $M_{\Gamma\Gamma}$
- Extended Higgs sector limits at 95% CL set on cross section times BR vs. mass of X and ratio α=M_φ/M_x
 - Limits range between 0.03-1.6 fb for X masses between 0.3-3 TeV and α between 0.5%-2.5%
- Results: <u>https://cms-results.web.cern.ch/cms-results/public-results/publications/EXO-22-022/</u>

CMS Experiment at LHC, CERN Data recorded: Sat Jun 18 04:12:21 2016 EDT Γ_2 Run/Event: 275311/410113074 CNN Pred: 99.99% Diphoton Lumi section: 323 $\eta = 0.51, \phi = 2.93$ 10 **Γ**1 η = 0.51 m_{__}= 1596.22 GeV Relative ϕ (crystals) Normalized Energy $\phi = 2.93$ $p_{_{T}} = 706.63 \text{ GeV}$ $\alpha_{reco} = 0.0041$ m_= 6.54 GeV $\alpha_{reco} = 0.0041$, $(M/E)_{reco} = 0.0082$ -10 $m_{\Gamma} = 6.54 \text{ GeV}$ Event $m_{\Gamma\Gamma} = 1596.22 \text{ GeV}$ -15 -15 -10 -5 Ó 5 10 15 Relative n (crystals) Γ_1 15 CNN Pred: 99.99% Diphoton $\eta = -0.17, \phi = -0.11$ 10 η = -Ô.17 Relative ϕ (crystals) Normalized Energy $\phi = -0.11$ $p_{T} = 806.79 \text{ GeV}$ = 0.0035 α_{reco} m_= 5.52 GeV -5 $\alpha_{reco} = 0.0035$, $(M/E)_{reco} = 0.0067$ -10 $m_{\Gamma} = 5.52 \text{ GeV}$ Event $m_{\Gamma\Gamma} = 1596.22 \text{ GeV}$ -15 10 -15 -10 -5 0 5 15 Relative η (crystals)

Highest M_{rr} event

Event near largest significance

Classification CNN

- Convolutional Neural Net for diphoton (Γ) classification, <u>background rejection</u>
- Classifies images of clusters as Monophoton, Diphoton, or Hadron
- CNN assigns a probability of belonging to each class: $P_{\gamma} + P_{\gamma\gamma} + P_{had} = 1$

Signal Systematic Uncertainties

Nuisances (Normalization):

- Luminosity
 - Run 2 combined, 1.6%
- Trigger
 - o 5%
- Classification efficiency
 - From η reconstruction: 10%
 - \circ Applied to each cluster, total = 21%
- α^{reco} Shape
 - o **23%**

All sampled from Log-normal priors

Background Uncertainties: Only background systematic comes from the fit itself

Nuisances (Shape):

- Energy Scale per Cluster
 - From Z-peak measurement- 0.5% per cluster
- Pileup Reweighting
 < 21%, bin by bin

All sampled from Gaussian priors

$Z \rightarrow e^+e^-$ Reconstruction

Process:

- Reconstruct Z→e⁺e⁻ peaks after applying Classification NN
- Note: each *e* forms a Γ candidate

$$\circ$$
 $M_{Z,reco} = M_{\Gamma\Gamma}$

- Selection:
 - $P_{\nu\nu}$ >0.75, Energy isolation > 0.8

Motivation:

- e/γ leave similar signatures in ECAL
 - \circ No electron veto is used
- Useful to further validate ML
- Extract Data/MC systematic

0.5% Energy scale (per Γ) systematic is adopted to account for difference

Significance Test

- CMS
- Local Significance plot shown on right 138 fb⁻¹ (13 TeV) Largest Excesses: 3.5 CMS Supplementary m₀/m_× $M_{x} = 720 \text{ GeV}, a_{true} = 0.007 \dots$ Ο -ocal Significance (Std. Dev. Significance (std. dev) 0.02 3.57σ local/ 1.07σ global 2.5 M_{x} =590 GeV, α_{true} = 0.005 Ο 2.99σ local/ 0.62σ global 1.5 Global significance accounts for Look ocal Elsewhere Effect 0.0 0.5 0.00 2000 3000 300 1000 m_x [GeV]