

Pair Production and Hadron Photoproduction Backgrounds at the Cool Copper Collider (C³)

<u>Abdollah Mohammadi</u>¹, Sridhara Dasu¹, Elias Mettner¹, Lindsey Gray², Dimitris Ntounis³, Caterina Vernieri³

University of Wisconsin-Madison
 Fermi National Accelerator Laboratory
 Stanford University and SLAC National Accelerator Laboratory

DPF-Pheno 2024, Pittsburgh

May 13th, 2024

Why a Higgs Factory?

Measuring the Higgs couplings precisely is one of the utmost priorities in the field of High Energy Physics!

- Even at the end of HL-LHC, we would not be able to constrain the Higgs coupling better than a few percent.
- Higgs potential measurement would still remain a challenge by the end of HL-LHC.
- A Higgs factory is needed to probe the Higgs (self)couplings at a percent level

The Cool Copper Collider (C³)

□Newly proposed e⁺e⁻ Higgs factory

 $\square ECM: 250 \; \text{GeV} \rightarrow 550 \; \text{GeV} \rightarrow \text{TeV-Scale}$

 \Box Cold Copper Tech + Distributed RF Coupling \rightarrow high acceleration gradient

From ILC to C³ Parameters

 \Box Key Differences in C³ design against other linear colliders (ILC):

- Cooling Technology: Cryogenically-cooled normal-conducting accelerating structure v.s. superconducting RF technology
- □ Accelerating Technology: Higher gradients more compact design.
- □ Train Structure: higher train rep. freq., one order fewer bunches/train.
- **Bunch Structure**: 2 orders closer $+ \sim 3$ times smaller particle density.

Beam and Machine background

 e^+e^- pairs

 $\mu^+\mu^- \text{ pairs}$

hadronic events

- □ Various backgrounds originate in the Beam Delivery System or the Interaction Region of C³
- □ Can deteriorate detector performance:
 - □ Beam-induced Backgrounds: secondary e^+e^- pairs, $\gamma\gamma \rightarrow$ hadrons
 - Machine-induced Backgrounds: halo muon, neutron production
- This presentation will focus on the Beam-Induced Backgrounds
 Abdollah Mohammadi (UW-Madison)

- This background comes from the generation of virtual photons as bunches pass through each other or from hard bremsstrahlung
 - □ Around 10⁵ pairs / bunch crossing expected with C³
 - Most are deflected, but a small fraction reach detector
- □ Simulation of background using GUINEA-PIG
 - Interaction with detector, simulated by Geant4 thru Detector Description Toolkit for High Energy Physics (DD4hep)

e⁺e⁻ Pair Background Occupancy

- □ Visualization of occupancy within 5 tracker layers (hits/mm²)
- Background clearly impacts the entire first layer

e⁺e⁻ Pair Background Occupancy

- Above: Fraction of cells unable to accumulate more data
- □ For comparison
 - □ ILC plot includes all backgrounds, C³ only incoherent pair
 - □ ILC bunch train is 10x longer than C³

Hadron Photoproduction Background and Simulation

- Beamstrahlung photons can also produce a hadronic background at smaller rate than the e⁺e⁻ pair background
 - □ More central than incoherent pairs, may still impact reconstruction
- **PYTHIA** used for simulation of processes above $\sqrt{s_{\gamma\gamma}} > 2$ GeV
 - Interfaced w/ detector through Geant4/DD4hep
 - □ $\sqrt{s_{\gamma\gamma}}$ < 2 GeV: use WHIZARD/CIRCE

Hadron Photoproduction Occupancy

Above: Visualization of occupancy within 5 tracker layers (hits/mm2)
 Significantly more central than Pair Production background

Hadron Photoproduction Occupancy

- Above: Fraction of cells unable to accumulate more data + rescaling
- □ Rescaling is done to include the contributions from $\sqrt{s_{\gamma\gamma}}$ < 2 GeV

Summary

- □ C³ is a compact, upgradable, and sustainable Higgs Factory proposal
- Contribution from e^+e^- pairs and $\gamma\gamma \rightarrow$ hadron backgrounds is manageable
- ☐ The ILC is a valid reference for C³ studies. Modern clocking and timing performance means that C³ ~ ILC/10 where beam-based background's impact on performance considerations are concerned
- Generation of full hadron background processes is slow but steady
- □ Future Steps:
 - Finish hadron background generation
 - Expand data production and investigate further backgrounds
 - Utilize further ILC studies for re-examination within the context of C³
- While with the most recent P5 report, the construction of an on-shore e⁺e⁻ collider is not foreseeable in near future, the report calls out the possible R&D test facility efforts for cold copper phase-2.
- Studies of machine and beam induced backgrounds, prevalent in all Higgs factories, provides insight into the low-rate backgrounds that are pertinent in the large datasets of future e⁺e⁻ machines.

Hadron photo production for $\sqrt{s_{\gamma\gamma}} < 2 \text{ GeV}$

- □ Alternate workflow: GUINEA-PIG \rightarrow CIRCE \rightarrow WHIZARD
- Previous simulation from GUINEA-PIG utilized
 CIRCE: Output successfully tailored for C3 after some consideration
 - CIRCE had a bug when processing low-event GPig data
- This was fixed in a later release
 WHIZARD: Successful simulation with C3 but further modifications needed

FIG. 1: Energy spectrum of $\gamma \gamma \rightarrow \log p_T$ hadron events as a function of centre-of-mass energy. The figure shows the energy cutoff of 10 GeV below which the events are generated by the Barklow generator. Above 10 GeV the events are generated by Pythia.

Precision for the Higgs couplings obtained w/ different accelerators

2209.03472v1

W

Higgs Coupling	HL-LHC	ILC250	ILC500	ILC1000	FCC-ee	CEPC240	CEPC360	CLIC380	CLIC3000
(%)		+ HL-LHC	+HL-LHC	+ HL-LHC	+ HL-LHC	+ HL-LHC	+HL-LHC	+ HL-LHC	+HL-LHC
hZZ	1.5	.22	.17	.16	.17	.074	.072	.34	.22
hWW	1.7	.98	.20	.13	.41	.73	.41	.62	1
$hb\overline{b}$	3.7	1.06	.50	.41	.64	.73	.44	.98	.36
$h au^+ au^-$	3.4	1.03	.58	.48	.66	.77	.49	1.26	.74
hgg.	2.5	1.32	.82	.59	.89	.86	.61	1.36	.78
$hc\overline{c}$	-	1.95	1.22	.87	1.3	1.3	1.1	3.95	1.37
$h\gamma\gamma$	1.8	1.36	1.22	1.07	1.3	1.68	1.5	1.37	1.13
$h\gamma Z$	9.8	10.2	10.2	10.2	10	4.28	4.17	10.26	5.67
$h\mu^+\mu^-$	4.3	4.14	3.9	3.53	3.9	3.3	3.2	4.36	3.47
$htar{t}$	3.4	3.12	2.82	1.4	3.1	3.1	3.1	3.14	2.01
Γ_{tot}	5.3	1.8	.63	.45	1.1	1.65	1.1	1.44	.41