Imprints of Early Universe Cosmology on Gravitational waves

arXiv: 2405.xxxx [hep-ph] Mudit Rai Texas A&M University Collaborators : Bhaskar Dutta, James B. Dent

muditrai@tamu.edu

2

Motivation

- \blacktriangleright Physics before BBN ($T \sim MeV$) is not well understood due to lack of observational data.
- Gravitational waves can be a natural way to probe this epoch between end of inflation and BBN.

https://arxiv.org/pdf/2006.16182

Introduction

- Energy/entropy injection before BBN has been discussed extensively:
	- Fluctuations generated during inflation and later reentry [Carr & Lidsey,]
	- Collapse of domain walls [Cai et al, ...]
	- PBH reheating [Bernal et al, ...]
	- Bubble collisions during phase transition [Kodama et al, ...]
	- \blacksquare Temperature increase during reheating $[Co$ et al, ...]
- The rate of energy injection can be either be fast where the field remains stuck as the temperature rises or can be slow where the field tracks its T dependent minima.
- We consider its effects on the GW spectrum for a wide range of FOPT in hidden sectors.

Cosmological setup

4

- We consider the scenario where the hidden sector is thermally decoupled to the SM.
- We assume that the SM makes up bulk of the energy density of the universe.
- The ratio of hidden sector temperature and that of SM is given by $\xi = \frac{T_h}{T}$ T_{SM} < 1
- Any small change in the energy density of the universe will thus have more impact on hidden sector as compared to SM and the Hubble will be unaffected.

 \blacktriangleright Net energy density of the universe is given as, $\rho_R(T) =$ π^2 $\frac{\pi^2}{30} \Big(g_h^*(T) + \frac{g_{SM}^*(T_{SM})}{\xi^4} \Big) T^4$

Model realization

$$
V \approx D (T^2 - T_0^2) \phi^2 - E\,T\phi^3 + \frac{\lambda}{4} \phi^4
$$

• Initially, at high T, the field is in symmetric phase and there's just 1 minima at $\phi = 0$ As universe cools, $T < T_1$, there exist a second minima

$$
T_1^2 = \frac{T_0^2}{1 - \frac{9E^2}{8\lambda D}}, \quad \phi_1 = \frac{3E T_1}{2\lambda}
$$

As it further cools, these two minima become equi-potential and we have an onset of phase transition,

$$
V(0,T_c) = V(\phi_c, T_c) \qquad T_c^2 = \frac{T_0^2}{1 - \frac{E^2}{\lambda D}}, \quad \phi_c = \frac{2ET_c}{\lambda}
$$

After $T = T_0$, $\phi = 0$ ceases to be a minima and we are left with,

$$
\phi_0=\frac{3E\,T_0}{\lambda}
$$

- \blacktriangleright First transition happens at T = T_c (Phase 1)
- \triangleright Due to thermal kick at T_i , $(T_c > T_i > T_0)$, $T_i \rightarrow T_i(1 + \delta) > T_c$ whereas the field remains stuck at $\phi_i(T_i)$, leads to PT from $\phi_i \rightarrow$ 0 (Phase 2)
- As universe cools down, there's another PT from $0 \rightarrow \phi_c$, which is like the standard transition but happens at later redshift (Phase 3)

Strength of GW signal

7

Amplitude of GW signal is controlled by strength parameter, α given as

$$
\alpha = \frac{\Delta (V - \frac{1}{4}\partial_T V)}{\rho_R} \bigg|_{T = T_N} \qquad \rho_R(T_N) = \frac{\pi^2}{30} (g_h^* + \frac{g_{SM}^*}{\xi^4}) T_N^4
$$

• For the standard FOPT, we can simplify to get,

$$
\alpha\big|_{0\rightarrow\phi_c}=\alpha_c\approx \frac{\phi_c^2(-2\,D\,T_0^2)}{4\rho_R(T_c)}=\mu^2\,\frac{-\phi_c^2}{4\rho_R(T_c)}
$$

 \blacktriangleright For the PT due to kick, we have

$$
|\frac{\alpha_i}{\alpha_c}| \approx (1+\delta)^2 \left(\frac{\phi_{min}(\tilde{T}_i) T_c^2}{\phi_c(T_c) \tilde{T}_i^2} \right)^2 \frac{g_{SM}^*(T_c/\xi)}{g_{SM}^*(T_i/\xi)} > 1
$$

Duration of PT

 \blacktriangleright This parameter gives a measure of the duration of PT

 \triangleright Defined in terms of the Euclidean bounce action as,

$$
\frac{\beta}{H_*}=T\frac{d(S_3/T)}{dT}|_{T_*}
$$

• The Euclidean Bounce action is given via,
\n
$$
\frac{S_3}{T} = \frac{4.85 M^3}{E^2 T^3} f(\kappa)
$$
\n
$$
M^2 = 2 D (T^2 - T_0^2), \ \kappa = \frac{\lambda D}{E^2} \left(1 - \frac{T_0^2}{T^2}\right)
$$

• For the PT due to kick, the parameters get modified via,

$$
\tilde{M}^{2}(T) = M^{2}(T) + 3\phi_{i}(2 E T + \lambda \phi_{i})
$$

$$
\tilde{E} T = E T + \lambda \phi_{i}
$$

T_N and v_w

Dedicated numerical simulations are needed to calculate the T_N and v_w

We will use analytical approximations for T_N :

$$
\frac{S_3}{T_n} \approx 4 \log \frac{T_n}{H}
$$

 \blacksquare For wall velocity, a simple demarcation can be made where weaker FOPT attains terminal velocity and for stronger transition, it can overcome friction and wall becomes ultra-relativistic[1]

$$
v_w \approx \begin{cases} \frac{1}{\sqrt{3}}, & \alpha \lesssim 10^{-2} \\ 1, & \alpha \gtrsim 10^{-2} \end{cases}
$$

[1] https://arxiv.org/abs/2204.13120

- Energy injection leads to more than one peak frequencies for GW from FOPT in hidden sector.
- It is fairly independent w.r.to the mass scale of the hidden sector.
- Even for QCD like transitions, we expect to have multiple peaks due to kick.
- Hidden sectors with GW can probe a variety of new physics scenario in the pre-BBN era.

THANK YOU!

BACKUP Slides

Hidden sector

 \blacktriangleright For concreteness, we consider a scalar field with U(1) gauge symmetry and a Yukawa like coupling to fermion field,

$$
\mathcal{L}=-\frac{1}{4}F_{\mu\nu}F^{\mu\nu}+\frac{1}{2}\,D_\mu\phi\,D^\mu\phi+i\,\bar{\psi}\rlap{\,/}D\psi-\frac{y\phi}{\sqrt{2}}\,\bar{\psi}\psi-V(\phi)
$$

 \blacktriangleright The tree and thermal potential are given as

$$
V_0=-\frac{1}{2}\,\mu^2\phi^2+\frac{1}{4}\,\lambda\phi^4
$$

$$
V_{th}=\frac{T^4}{2\pi^2}\Big(n_\phi\,J_B\left[\frac{m_\phi^2}{T^2}\right]+n_X\,J_B\left[\frac{m_X^2}{T^2}\right]-n_f\,J_F\left[\frac{m_f^2}{T^2}\right]\Big)
$$

High T Potential

 \blacktriangleright At high temperatures, the effective potential is given as,

$$
V \approx D(T^2 - T_0^2)\phi^2 - E T \phi^3 + \frac{\lambda}{4} \phi^4
$$

where,

$$
D = \frac{\alpha}{2}, \quad \alpha = \frac{\lambda + g^2}{4} + \frac{y^2}{24}
$$

\n
$$
E = \frac{1}{12\pi} \left(3g^3 + \left(3\lambda + \frac{\alpha T^2 - \mu^2}{\phi^2} \right)^{3/2} \right) \approx \frac{g^3}{4\pi}
$$

\n
$$
T_0^2 = \frac{\mu^2}{2D}
$$

Gravitational Waves signal

ſ

 \blacktriangleright Differential GW density parameter characterizes them :

$$
\Omega_{GW} = \frac{1}{\rho_c} \frac{d\rho_{GW}}{d\log f}, \quad \rho_c = 3 M_{pl}^2 H^2
$$

 \blacktriangleright Semi-analytical parametrizations can be used to describe them,

$$
Q_{\rm GW}^{\rm em}(f_{\rm em}) = \sum_{I = {\rm BW, SW}} N_I \,\Delta_I(v_{\rm w}) \left(\frac{\kappa_I(\alpha_{-1}) \,\alpha_{\rm tot}}{1 + \alpha_{\rm tot}} \right)^{p_I} \left(\frac{H}{\beta} \right)^{q_I} s_I(f_{\rm em}/f_{\rm p,I}),
$$

$$
h^2 \,\Omega_{\rm GW}^0(f) = h^2 \mathcal{R} \,\Omega_{\rm GW}^{\rm em} \left(\frac{a_0}{a_{\rm perc}} f \right).
$$

GW parameters for PT Type 2

- The difference is due to phase transition between minimas which are not equipotential.
	- Effective potential near transition is given by, 2×10^{-8} $V \approx \frac{\tilde{M}^2(T)}{2} \phi^2 - \tilde{E} T \phi^3 + \frac{\lambda}{4} \phi^4$ -2×10 $\overline{\overset{\bigcirc}{\underset{\smile}{\bigcirc}}}$ -4. x 10⁻ $\tilde{M}^2(T) = M^2(T) + 3\phi_i(2ET + \lambda \phi_i)$ -8×10^{-8} -1×10^{-7} $\tilde{E}T = E T + \lambda \phi_i$ 0.00 0.01 0.02 0.05 0.06 0.07

The bounce action and the transition strength become,

$$
\frac{S_3}{T} = \frac{4.85 \,\tilde{M}^3(T)}{\tilde{E}^2 T^3} f(\tilde{\kappa}) \qquad \qquad |\frac{\alpha_i}{\alpha_c}| \approx (1+\delta)^2 \left(\frac{\phi_{min}(\tilde{T}_i) \, T_c^2}{\phi_c(T_c) \,\tilde{T}_i^2} \right)^2 \frac{g_{SM}^*(T_c/\xi)}{g_{SM}^*(T_i/\xi)} > 1
$$

GW signal parametrization

 \blacksquare Normalization factors and exponents :

 $(N_{\rm BW}, N_{\rm SW}) = (1, 0.159)$ $(p_{\rm BW}, p_{\rm SW}) = (2, 2)$ $(q_{\rm BW}, q_{\rm SW}) = (2, 1)$

 \rightarrow Potential suppression due to wall velocity :

$$
(\Delta_{\rm BW},\Delta_{\rm SW})\,=\,(\tfrac{0.11v_{\rm w}^3}{0.42+v_{\rm w}^3},1)
$$

■ Spectral shape function and peak frequencies :

$$
s_{\text{BW}}(x) = \frac{3.8 x^{2.8}}{1 + 2.8 x^{3.8}},
$$
 $s_{\text{SW}}(x) = x^3 \left(\frac{7}{4 + 3 x^2}\right)^{7/2},$
 $f_{\text{p,BW}} = 0.23 \beta,$ $f_{\text{p,SW}} = 0.53 \beta/v_{\text{w}}.$

GW spectrum : comparing scales

22 Slow reheating $\begin{array}{c} 1.0 \\ 0.1 \end{array}$

