Detecting Rare Species of Dark Matter with Terrestrial Detectors

i) Phys. Rev. Lett. 131, 011005 (2023) [arXiv: 2303.03416] ii) JCAP 01 029 (2024) [arXiv: 2309.10032] iii) arXiv: 2402.03431

Anupam Ray

N3AS Fellow, UC Berkeley & University of Minnesota

DPF-PHENO, 2024 05.13.2024

Dark Matter (DM)

https://wmap.gsfc.nasa.gov/universe/uni_matter.html

• DM mass? • DM interactions with baryons?

Strongly-interacting DM Component

• A sub-component of DM can be strongly interacting.

f ^χ ≪ 1

makes up a sub-component *χ*of the total DM energy budget.

Strongly-interacting DM Component

Mckeen et al [PRD, 2022]

Take Away

• "Earth-bound" DM provides a novel powerful probe.

The density of "Earth-bound DM" can be huge, 15 orders of magnitude larger than the Galactic DM density!

Annihilating DM

• Local annihilation inside any large-volume neutrino detectors (such as Super-Kamiokande)

> Ray, (with Mckeen, Morissey, Pospelov, Ramani) [PRL, 2023]

• Neutrinos from annihilation of Earth-bound DM.

Pospelov & Ray [JCAP, 2024]

Non-Annihilating DM

• Earth-bound DM can be up-scattered by fast neutrons inside the nuclear reactors, and subsequently detected.

> Ray, (with Ema, Pospelov) [2402.03431]

Earth-Bound DM

Earth-Bound DM

Bramante et al. (PRD, 2022)

• Lets do some estimate:

For DM mass of 1 GeV and
$$
\sigma_{\chi n} = 10^{-28} \text{ cm}^2
$$

$$
C_{\text{geo}} = 1.3 \times 10^{25} \text{ s}^{-1}
$$
 and $f_c \sim 0.1$ $f_{\chi} = 1$

DM density (assuming they uniformly distribute over the Earth-volume)

$$
\rho_{\chi} = m_{\chi} \frac{f_c \times C_{\text{geo}} \times t_{\oplus}}{V_{\oplus}} \sim 3 \times 10^{14} \,\text{GeV/cm}^3
$$

• 15 orders of magnitude larger than the Galactic DM density!

DM Distribution in Stellar Objects

Signal at Super-K

• Earth-bound DM, of mass GeV scale have an enormously large surface density.

• Their detection via scattering is almost impossible as they acquire very little amount kinetic energy (0.03 eV).

• How to detect them?

Ray, (with Mckeen, Morissey, Pospelov, Ramani) [PRL, 2023]

Our proposal: simply look at their annihilation signature inside largevolume detectors (annihilation is not limited to the tiny kinetic energy)! Results

• Using existing di-nucleon annihilation searches at Super-K

Results

Results

What about heavy DM?

Neutrino Signal

• Earth-bound DM if sufficiently heavy, shrinks towards the core, leading to a negligible surface density.

gravity dominates over the diffusion processes

- Annihilation to neutrinos can occur at the Earth-core, if Earth-bound DM if sufficiently heavy. Since the number density is huge, annihilation rate is also fairly large.
- Neutrinos, because of their feeble interactions, can reach detectors like Super-K, IceCube-DeepCore, and searching these annihilated neutrinos can provide sensitivity to DM interactions.

Pospelov & Ray [JCAP, 2024]

• We consider two phenological scenarios:

Lower energy neutrinos from the stopped pion decay

Higher energy neutrino lines from direct annihilation

Low Energy Neutrinos

Low Energy Neutrinos

10^{-26} 10^{-2} 10^{-26} SK-Gd **SK-Gd XQC** (This analysis) 10^{-28} **XQC** This analysis 10^{-28} **RRS XQC** 10^{-28} **CRESST CRESST CRESST RRS** 10^{-30} 10^{-30} (Surface) 10^{-30} (Surface) (Surface) **RRS** $\frac{1}{6}$ 10⁻³²
 $\frac{1}{6}$ 10⁻³² $\frac{1}{6}$
 $\frac{10^{-32}}{10^{-34}}$ $\sigma_{\chi \text{m}}$ [cm^2] 10^{-32} 10^{-32} SK-Gd **XENON-1T XENON-1T XENON-1T** (This analysis) 10^{-34} **CRESST-III** 10^{-36} 10^{-36} 10^{-36} **CRESST-III CRESST-III** CDMS-I 10^{-38} 10^{-38} 10^{-38} CDMS-I CDMS-I $f_{\chi} = 10^{-2}$ $f_{\chi} = 10^{-3}$ $= 5 \times 10^{-3}$ 10^{-40} 10^{-40} 10^{-40} 5 10 $10²$ 5 10 $10²$ $10³$ $10³$ 10 5 10^{2} $10³$ m_x [GeV] $m_{\rm y}$ [GeV] m_X [GeV]

Pospelov & Ray [JCAP, 2024]

We use the Super-K DSNB search result with 0.01 wt% gadolinium loaded water (22.5 kton \times 552.2 days) to derive the exclusion limits

Super-Kamiokande (APJL, 2023)

*Gd-loaded water gives competitive limit (as compared to the pure-water limits) although the data is 5 times less.

- DM annihilation directly to neutrinos yields a line at $E_\nu = m_\chi^2$ high-energy neutrinos can also come from $\chi\chi\to W^+W^-, b\bar{b}, \tau\bar{\tau}$, giving a continuum spectra up to $E_\nu = m_\chi$ (or $\chi\chi \to A'A' \to 4\nu$).
- We search the "neutrino-line" signature in the IceCube DeepCore data with a total live-time of 6.75 years.
- We use the null-detection of the neutrino-line signature in the IceCube DeepCore data to derive the exclusions

IceCube (PRD,2022)

High Energy Neutrinos

Pospelov & Ray [JCAP, 2024]

We probe up to $f_\chi \geq 10^{-8}$ for sufficiently heavy Earth-bound DM.

Summary

• Earth accumulates significant number of DM particles from the Galactic halo, leading to a DM density 15 orders of magnitude larger than the Galactic DM density!

• Despite their prodigious abundance, their detection is extremely challenging as they acquire tiny amount of kinetic energy.

• Annihilation of such Earth-bound DM at large-volume neutrino detectors, provides a novel way for their detection and can be used to probe strongly-interacting DM component. Conclusion

How to detect rare species of DM?

Look at the Earth-bound DM!

Questions & Comments: anupam.ray@berkeley.edu