# Lepton Number Breaking from the Electroweak Scale

Wenjie Huang

in collaboration with Prof. Brian Batell and Dr. Amit Bhoonah (Work in progress)



DPF-Pheno 2024

May 15, 2024

#### Motivation

- Neutrinos are not massless.
  - Origin of neutrino mass? Smallness? Dirac or Majorana?
- Seesaw Mechanism and Majorana neutrino
  - Type-1 seesaw, Heavy Neural Leptons (right-handed neutrinos) N are introduced.
  - HNL mass term violates lepton number L by 2 units and could be high mass scale, e.g.  $M_N \gtrsim 10^9~GeV$  for thermal Leptogenesis (challenging to probe experimentally).
  - If  $M_N$  is lower-scale, e.g. the electroweak scale, the physics can be probed by our current experiments.

Can lepton number symmetry be broken at the weak scale?

#### Lepton Number Breaking from the Weak Scale

• In SM, the Higgs doublet  $\Phi$  does not carry lepton number:

$$(\Phi^{\dagger}\Phi)NN \xrightarrow{} \frac{1}{2}v^2NN$$
, but  $(\Phi^{\dagger}\Phi)NN$  does not preserve lepton number.

• To preserve global  $U(1)_L$  symmetry above the weak scale, need an additional Higgs doublet  $\Phi_1$  which carries Lepton number beside the one  $\Phi_2$  that does not carry lepton number:

$$\underbrace{(\Phi_1^\dagger \Phi_2)NN}_{\text{EWSB}} \xrightarrow{1} \underbrace{v_1 v_2 NN}_{\text{and breaks lepton number from the weak scale.}}^{-1 \ -1}$$

dim=5, effective operator of some higher-scale physics. Hence,  $\frac{C}{\Lambda_{NP}}\Phi_1^{\dagger}\Phi_2NN$ 

## Effective Field Theory (2HDML)

$$\mathcal{L}_{EFT} = \mathcal{L}_{SM} + \sum_{i=1,2} (D^{\mu}\Phi_{i})^{\dagger}(D_{\mu}\Phi_{i}) - V(\Phi_{1}, \Phi_{2}) + iN^{\dagger}\bar{\sigma}^{\mu}\partial_{\mu}N - \frac{C}{\Lambda}\Phi_{1}^{\dagger}\Phi_{2}NN - Y_{\nu}\ell\Phi_{2}N + h \cdot c$$
SM Yukawa sectors

Two-Higgs Doublet Model

SM Yukawa sectors all coupled to  $\Phi_2$ 

Two-Higgs Doublet Model (2HDM) Lagrangian

HNL Lagrangian, responsible for neutrino mass generation

• The tree-level two-Higgs doublet potential:

$$V(\Phi_1, \Phi_2) = m_{11}^2 \Phi_1^{\dagger} \Phi_1 + m_{22}^2 \Phi_2^{\dagger} \Phi_2 + \frac{\lambda_1}{2} (\Phi_1^{\dagger} \Phi_1)^2 + \frac{\lambda_2}{2} (\Phi_2^{\dagger} \Phi_2)^2 + \lambda_3 (\Phi_1^{\dagger} \Phi_1) (\Phi_2^{\dagger} \Phi_2) + \lambda_4 (\Phi_1^{\dagger} \Phi_2) (\Phi_2^{\dagger} \Phi_1)$$

$$-(m_{12}^2 \Phi_1^{\dagger} \Phi_2 + h \cdot c.)$$
Softly break lepton number symmetry

- CP conserving, flavor limit
- Lepton number symmetry prevents the term  $\lambda_5(\Phi_1^\dagger\Phi_2)^2+h$  . c .

### Neutrino Mass Generation via Type-1 Seesaw

Consider 
$$\mathscr{L}_{\nu}\supset -\frac{C}{\Lambda}\Phi_1^{\dagger}\Phi_2NN-Y_{\nu}\mathscr{E}\Phi_2N+h$$
 .  $c$ 

• For simplified single-generation model,  $\langle \Phi_i \rangle = v_i / \sqrt{2}$ .

$$\left(\frac{1}{2}\frac{C}{\Lambda}v^2\sin\beta\cos\beta\right)NN + \frac{Y_{\nu}v\cos\beta}{\sqrt{2}}\nu N \equiv \frac{1}{2}\left(\nu - N\right)\begin{pmatrix} 0 & m_D \\ m_D & M \end{pmatrix}\begin{pmatrix} \nu \\ N \end{pmatrix}$$

$$v_1^2 + v_2^2 \equiv v^2 \simeq (246 \text{ GeV})^2,$$
  
 $v_1 = v \cos \beta, \ v_2 = v \sin \beta, \ \tan \beta = \frac{v_2}{v_1}$ 

with 
$$m_D = \frac{Y_\nu v \cos \beta}{\sqrt{2}}$$
;  $M = \frac{C}{\Lambda} v^2 \cos \beta \sin \beta = \frac{C}{\Lambda} v^2 \frac{1 + \tan^2 \beta}{\tan \beta}$ 

 $M \lesssim v$ 

In the mass basis,

$$N \rightarrow -i \sin \theta \nu + \cos \theta N$$

 $\nu \to i \cos \theta \ \nu + \sin \theta \ N$ 

In the limit 
$$m_D \ll M$$
,  $m_{\nu} \simeq \frac{m_D^2}{M}$ ,  $m_N \simeq M$  and  $\cos\theta \simeq 1$ ,  $\sin\theta \simeq m_D/M$ 

• For  $n \ge 2$ , the generation is done by Casas-Ibarra Parametrization and fitting to the neutrino oscillation data

#### Quantum Correction to HNL Mass

#### **One-loop contribution**

Dynamically generated Weinberg-type operator  $(L\Phi_1)(L\Phi_2)$ 



$$\Phi_{2} \longrightarrow \Phi_{1} \longrightarrow \frac{C}{\Lambda} \frac{m_{12}^{2}}{16\pi^{2}} \ll \frac{1}{2} \frac{C}{\Lambda} v^{2} \sin \beta \cos \beta \longrightarrow m_{12}^{2} \ll 4\pi v^{2}$$

The correction to HNL mass term is small.

#### **UV Completion**

#### Scalar Singlet Example

Consider a heavy complex scalar singlet  $\phi$  carrying lepton number L=+2

$$\mathcal{L} \supset \partial_{\mu} \phi^{\dagger} \partial^{\mu} \phi - M_{\phi}^{2} \phi^{\dagger} \phi - \lambda \phi NN - g \phi \Phi_{2}^{\dagger} \Phi_{1} + h.c.$$



## Two-Higgs Doublet Model (2HDM)

Expansion of the Higgs fields around the vev's:

$$\Phi_{i} = \begin{pmatrix} \Phi_{i}^{+} \\ (v_{i} + \rho_{i} + i\eta_{i})/\sqrt{2} \end{pmatrix}, \quad i = 1,2$$

$$\begin{pmatrix} H \\ h \end{pmatrix} = \begin{pmatrix} \cos \alpha & \sin \alpha \\ -\sin \alpha & \cos \alpha \end{pmatrix} \begin{pmatrix} \rho_1 \\ \rho_2 \end{pmatrix} \qquad A = -\eta_1 \sin \beta + \eta_2 \cos \beta \\ H^{\pm} = -\Phi_1^{\pm} \sin \beta + \Phi_2^{\pm} \cos \beta \end{pmatrix}$$

$$h_{SM} = H\cos(\beta - \alpha) + h\sin(\beta - \alpha)$$
 (In the Higgs basis)

| $ \begin{pmatrix} H \\ h \end{pmatrix} = \begin{pmatrix} \cos \alpha & \sin \alpha \\ -\sin \alpha & \cos \alpha \end{pmatrix} \begin{pmatrix} \rho_1 \\ \rho_2 \end{pmatrix} \qquad A = -\eta_1 \sin \beta + \eta_2 \cos \beta \\ H^{\pm} = -\Phi_1^{\pm} \sin \beta + \Phi_2^{\pm} \cos \beta $ | Type-2              | u    |  |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------|------|--|
| $h \int_{-\sin \alpha} (\cos \alpha) \left( \rho_2 \right) H^{\pm} = -\Phi_1^{\pm} \sin \beta + \Phi_2^{\pm} \cos \beta$                                                                                                                                                                          | Lepton-<br>specific | u, d |  |
| $d_{M} = H\cos(\beta - \alpha) + h\sin(\beta - \alpha)$ (In the Higgs basis)                                                                                                                                                                                                                      | Flipped             | u, I |  |

Parameters

 $m_{11}^2, m_{22}^2, \lambda_1, \lambda_2, \lambda_3, \lambda_4, m_{12}^2$  $v, \tan \beta, \alpha, m_h, m_H, m_A, m_{H^{\pm}}$ 246 GeV ~125 GeV

Our model (2HDML) is Type-1.

 $\Phi_{2}$ 

u, d, l

Type-1

#### Heavy Neutral Lepton N

Examples of New decay channels

ususal HNL:

New in 2HDML:

GeV-scale HNL, which satisfies the seesaw relation, is long-lived.  $c\tau_N~(\gtrsim 10^6 m) \gg \text{size of LHC detectors.}$ 







## Light CP-Even Higgs h

$$\kappa_f \sum_{f=q,l} \frac{m_f}{v} h f \bar{f} + \kappa_N \frac{M}{v} h N N$$

$$\kappa_f = \sin(\beta - \alpha) + \cos(\beta - \alpha) / \tan \beta$$

$$\kappa_N = \cos^2 \theta \left[ \frac{\cos(\beta - \alpha)}{2} (\frac{1}{\tan \beta} - \tan \beta) + \sin(\beta - \alpha) \right]$$

Measurements of the SM Higgs couplings place constraint on  $\cos(\beta - \alpha)$ :  $\cos(\beta - \alpha)$  close to 0.

Higgs invisible decay:  $h \rightarrow NN$ 

- Observed BR(h->inv) < 0.107 at the 95% CL (combined Run1+Run2 data at LHC; VBF, ggF, Zh, tth production modes are considered) [ATLAS, 2023, arXiv: 2301.10731]
- Derive an upper bound on N mass, ~3 GeV



### Heavy CP-Even Higgs H

$$\kappa_f \sum_{f=q,l} \frac{m_f}{v} Hf\bar{f} + \kappa_N \frac{M}{v} HNN$$

$$\kappa_f = \cos(\beta - \alpha) - \sin(\beta - \alpha)/\tan\beta$$

Mono-jet+  $E_T$ 

arXiv: 2102.10874]

[ATLAS, 2021,

$$\kappa_f = \cos(\beta - \alpha) - \sin(\beta - \alpha)/\tan\beta$$

$$\kappa_N = \cos^2\theta \left[\cos(\beta - \alpha) - \frac{1}{2}\sin(\beta - \alpha)(\tan\beta - \frac{1}{\tan\beta})\right]$$

Enhanced by  $\tan \beta$ for large  $\tan \beta$  $\frac{1}{\beta}$  for  $\tan \beta > 1$ suppressed by - $\tan \beta$ 





### Potentially More Optimal Searches

associated production (analysis in progress)



can consider A->NN decay without  $1/\tan \beta$  suppression in large  $\tan \beta$  region

### Outlook and Work in Progress

Lepton flavor violation:



EW precision test



- Other probes of HNLs (fix-target experiments, meson decay, etc)
- What if L(N) = + 1? How does this lepton number assignment change the story?

#### Summary of our work by far

- 2HDML is a simple extension of SM. In this model, lepton number symmetry is broken from the weak scale and the HNL mass is predicted to be lighter than the weak scale.
- Correction to HNL mass at 1-loop level is small, which avoids spoiling the Type-1 seesaw mechanism.
- GeV-scale HNL, which satisfies the seesaw relation, is a long-lived particle, and thus  $h \to NN$  is invisible at the LHC. We have shown that an upper bound  $\sim \mathcal{O}(1)$  GeV on the HNL mass can be derived from analysis of this decay.
- $A/H \rightarrow NN$  becomes the dominant decay channel of A/H for large  $\tan \beta$  in 2HDML. Yet the Yukawa couplings of A/H to fermions pairs in 2HDML are proportional to  $1/\tan \beta$ , which suppresses the production of A/H at LHC.

(Our work is ongoing with various potential directions to explore due to the rich phenomenology in 2HDML.)

# Backup Slides

### Extension to the Standard Model (SM)

- Type-1 seesaw: Introduce Right-Handed Neutrinos (RHN)  $\bar{\nu}$
- To preserve global  $U(1)_L$  symmetry above the weak scale, need an extra Higgs doublet carrying Lepton number while the SM Higgs doublet doesn't



TABLE I. Quantum number assignments for fields.

# 2HDM Physics Spectrum (in Physical Basis)

$$\mathcal{L} \supset -\left(\Phi_{1}^{-} \Phi_{2}^{-}\right) \mathcal{M}_{\pm}^{2} \begin{pmatrix} \Phi_{1}^{+} \\ \Phi_{2}^{+} \end{pmatrix} - \frac{1}{2} (\eta_{1} \eta_{2}) \mathcal{M}_{A}^{2} \begin{pmatrix} \eta_{1} \\ \eta_{2} \end{pmatrix} - \frac{1}{2} (\rho_{1} \rho_{2}) \mathcal{M}_{h}^{2} \begin{pmatrix} \rho_{1} \\ \rho_{2} \end{pmatrix} + \mathcal{L}_{int}$$

$$\mathcal{M}_{\pm}^{2} = m_{\pm}^{2} \begin{pmatrix} s_{\beta}^{2} & -c_{\beta}s_{\beta} \\ -c_{\beta}s_{\beta} & c_{\beta}^{2} \end{pmatrix}; \quad \mathcal{M}_{A}^{2} = m_{A}^{2} \begin{pmatrix} s_{\beta}^{2} & -c_{\beta}s_{\beta} \\ -c_{\beta}s_{\beta} & c_{\beta}^{2} \end{pmatrix}; \quad \mathcal{M}_{h}^{2} = \begin{pmatrix} m_{h11}^{2} & m_{h12}^{2} \\ m_{h12}^{2} & m_{h22}^{2} \end{pmatrix}$$

• 
$$m_{\pm}^2 = \frac{1}{2} \frac{m_{12}^2 + m_{12}^{2*}}{c_{\beta} s_{\beta}} - \frac{1}{2} \lambda_4 v_0^2; \ m_A^2 = \frac{1}{2} \frac{m_{12}^2 + m_{12}^{2*}}{c_{\beta} s_{\beta}}$$
  
 $m_{h11}^2 = \frac{1}{2} (m_{12}^2 + m_{12}^{2*}) \tan \beta + \lambda_1 v_0^2 \cos \beta^2; \ m_{h22}^2 = \frac{1}{2} (m_{12}^2 + m_{12}^{2*}) \cot \beta + \lambda_2 v_0^2 \sin \beta^2;$   
 $m_{h12}^2 = -\frac{1}{2} (m_{12}^2 + m_{12}^{2*}) + (\lambda_3 + \lambda_4) v_0^2 \sin \beta \cos \beta$