



#### Systematic Uncertainties from Synthetic Datasets A case study with $HH \rightarrow 4b$

#### John Alison

Carnegie Mellon University

## Motivation

Measuring the Higgs self-coupling  $\lambda$  major goal of the HL-LHC Di-Higgs production most direct and most sensitivity way measure  $\lambda$ 



## Motivation

Measuring the Higgs self-coupling  $\lambda$  major goal of the HL-LHC Di-Higgs production most direct and most sensitivity way measure  $\lambda$ 



## Motivation

Measuring the Higgs self-coupling  $\lambda$  major goal of the HL-LHC Di-Higgs production most direct and most sensitivity way measure  $\lambda$ 



### Data Driven Background: ABCD









#### Data Driven Background: ABCD



#### Data Driven Background: ABCD

















Rest of this talk is an idea for validating this uncertainty

## **Standard Solution:** Validation Region

#### Strategy in previous 4b analyses:

Validated prediction in alternative signal-free region



## **Standard Solution:** Validation Region



## **Standard Solution:** Validation Region



# Aside: Solution with Optimal Transport

#### BACKGROUND MODELING FOR DOUBLE HIGGS BOSON PRODUCTION: DENSITY RATIOS AND OPTIMAL TRANSPORT

BY TUDOR MANOLE<sup>a</sup>, PATRICK BRYANT<sup>d</sup>, JOHN ALISON<sup>e</sup>, MIKAEL KUUSELA<sup>b</sup>, AND LARRY WASSERMAN<sup>c</sup>

Department of Statistics and Data Science and NSF AI Planning Institute for Data-Driven Discovery in Physics, Carnegie Mellon University

<sup>a</sup>tmanole@andrew.cmu.edu; <sup>b</sup>mkuusela@andrew.cmu.edu; <sup>c</sup>larry@stat.cmu.edu

Department of Physics and NSF AI Planning Institute for Data-Driven Discovery in Physics, Carnegie Mellon University <sup>d</sup>pbryant2@andrew.cmu.edu; <sup>e</sup>johnalison@cmu.edu



16

## Synthetic Datasets: Event Mixing





# Synthetic Datasets: Event Mixing



# Synthetic Datasets: Event Mixing







## Systematics with Mixed Data

Consider three sources of potential systematic uncertainty

Variance: Arises from multi-variate classifier fit finite dataset CR

**<u>Bias</u>**: Assumption that density ratio measured in CR is same as SR

<u>Spurious Signal</u> Can misspecification of the background model look like a signal under the null hypothesis ? *(See backup)* 

Assumptions rigorously defined for stats audience: <u>arXiv:2208.02807</u>













#### Variance Uncertainties



## Extrapolation Uncertainty

Compare average background predictions to observed yield in (mixed-data) signal region



## Extrapolation Uncertainty

Compare average background predictions to observed yield in (mixed-data) signal region



## Extrapolation Uncertainty

Compare average background predictions to observed yield in (mixed-data) signal region



#### **Bias Uncertainties**



Analysis of 4b Signal Region



## Conclusions

Data-driven background ubiquitous in particle physics

Require assumptions w/large hard-to-quantify systematic uncertainties

Synthetic datasets can provide more principled assessment of systematics Believe synthetic datasets will be increasing important in future

Case study in search for HH $\rightarrow$ 4b more details: <u>arXiv:2403.20241</u>

Believe concept can be generalized beyond HH and high-energy physics

#### Future directions:

- Reduce variance by k-folding
- Correct bias, take smaller uncertainty
- Larger higher fidelity synthetic datasets

# Backup



## Mixed data:

![](_page_37_Figure_1.jpeg)

## Mixed data:

![](_page_38_Figure_1.jpeg)