Search for chargino pair-production and chargino-neutralino production with *R*-Parity Violating decays in *pp* collisions at 13 TeV with ATLAS

Michael Hank, **Bobby M^cGovern**, Lauren Osojnak, Evelyn Thomson

ATLAS and the LHC

- LHC produces *pp* collisions
- ATLAS is a multipurpose detector with $\approx 4\pi$ coverage, consisting of:
 - 2 T solenoid and 4 T toroid magnets Ο
 - Inner charged-particle tracker \bigcirc
 - EM and hadronic calorimeters \bigcirc
 - Muon spectrometer Ο
- 140 fb⁻¹ of *pp* data collected in Run 2 (2015 - 2018)
- Run 3 ongoing (2022–)

Bobby M^cGovern

Supersymmetry (SUSY) and *R*-parity violation (RPV)

- SUSY has a "superpartner" for each Standard Model particle state
- Superpartners of electroweak sector (W, Z, Higgs) mix together and produce *electroweakinos:*
 - Charged states are **charginos**, numbered by mass (C1, C2, ...)
 - Neutral states are **neutralinos**, numbered by mass (N1, N2, ...)
- RPV: allows direct SUSY→SM decays, subject to phenomenological requirements

$$W^{\pm}, W^{0}, B^{0}, h^{0}, \dots \iff \widetilde{\chi}_{1}^{\pm}, \widetilde{\chi}_{1}^{0}, \widetilde{\chi}_{2}^{0}, \widetilde{\chi}_{3}^{0}, \dots$$

i.e. **C1, N1,** N2, N3, ...

The B-L Minimal Supersymmetric Model (B-L MSSM)

- B-L MSSM adds U(1)_{B-I} baryon minus lepton number symmetry
- We search for preferred, RPV decay of mass-degenerate C1/N1 to helhv
- Previous ATLAS search explored trilepton signature, C1/N1 decay to $Z\ell/Zv$

Bobby M^CGovern

2024-05-13

C1C1/C1N1 signal model, analysis strategy

- $4b2\ell$ and $4b1\ell + E_{T}^{miss}$ final states
- Focus on $h \rightarrow bb$
 - BR $(h \rightarrow bb)^2 \approx 34\%$
 - *b*-jets have distinct signature, tagged with 77% efficiency
 - Pair *b*-jets into h_1 and h_2 based on minimizing ΔR between jets in each Higgs
- Chargino-chargino (C1C1)
 - 2 opposite-sign leptons
 - Pair Higgs and lepton into C1 candidates
 - Minimize mass asymmetry $|m_{C1,1} m_{C1,2}| / (m_{C1,1} + m_{C1,2})$
- Chargino-neutralino (C1N1)
 - Exploring pairing into C1, N1

Cuts, regions, and major backgrounds

- Identify discriminating variables using Monte Carlo simulation of signal and background
- Place cuts on these variables to create different types of region:
 - Signal region (SR): optimized for signal to background significance
 - Control regions (CR): normalize backgrounds
 - Validation regions (VR): test background model close to SR
- C1C1 primary backgrounds:

 ttbar: *tt* decaying to *bbllvv* with an ISR/FSR jet
 ttH: *tt* with a Higgs decaying to *bb*ttV: *tt* with a W or Z boson

 For C1N1, these backgrounds need only 1 lepton in decay
 - Additional major background single-t: *Wt* with ISR/FSR jet

C1C1 Signal Region optimization

- Left: Leading reconstructed chargino mass m_{C1}, good S/B
- Right: Mass asymmetry *N*-1 in SR; cut at 0.2 strongly rejects background

Bobby M^cGovern

2024-05-13

C1C1 2 *b*-jet Control Region Data/MC comparison

• Good agreement in leading reconstructed chargino mass m_{C1} leading jet p_{T}

C1N1 extension

- Motivation: C1N1 production has 2× cross section of C1C1
- Challenges:
 - For N1, can only reconstruct transverse mass $m_{T,N1}$
 - Pairing more difficult, currently using max Δ*R* between Higgs and lepton
 - *tt* backgrounds larger with 1 lepton
 - New major background: single-top production

C1N1 C1C1 10000 ATLAS Simulation Work in progress 1000 100 10 0.1 0.01 500 1500 2000 1000

Cross section [fb]

mχ̃ [GeV]

2024-05-13

C1N1 Signal Region optimization

- Left: only 4-jet, 1-lepton selection; Right: exploratory cuts $(m_{h1,2}, H_T, E_T^{miss})$
 - S/B low before optimization, greatly improved by cuts
- Optimization is ongoing, expect further improvement

Conclusion

- C1C1
 - Searching for RPV chargino-chargino production with 4*b*2*l* final state
 - Defined and optimized signal, validation, and control regions
 - Data/Monte Carlo comparisons ongoing, with reasonable agreement
- C1N1
 - Searching for RPV chargino-neutralino production with $4b1\ell + E_T^{\text{miss}}$ final state
 - Possibility of significantly extending reach of C1C1 analysis
 - Defining and optimizing analysis regions

Bobby M^cGovern

References

References

- ATLAS Collaboration, "The ATLAS Experiment at the CERN Large Hadron Collider," JINST 3 (2008) S08003.
- S. P. MARTIN, A SUPERSYMMETRY PRIMER, p. 1–98. WORLD SCIENTIFIC, July, 1998. <u>http://doi.org/10.1142/9789812839657_0001</u>.
- Z. Marshall, B. A. Ovrut, A. Purves, and S. Spinner, "Spontaneous R-parity breaking, stop LSP decays and the neutrino mass hierarchy," <u>Physics Letters B 732 (May,</u> <u>2014) 325–329</u>.
- P. F. Pérez, "New paradigm for baryon and lepton number violation," <u>Physics</u> <u>Reports 597 (Sep, 2015) 1–30</u>.
- B. A. Ovrut, A. Purves, and S. Spinner, "The minimal SUSY B –L model: From the unification scale to the LHC." 2015. <u>https://doi.org/10.48550/arXiv.1503.01473</u>.
- S. Dumitru, B. A. Ovrut, and A. Purves, "R-parity violating decays of wino chargino and wino neutralino LSPs and NLSPs at the LHC." 2019. <u>https://doi.org/10.48550/arXiv.1811.05581</u>.

Simulated cross sections

2024-05-13

Penn 16

C1C1 analysis region definitions

Region	<i>b</i> -jets	<i>m</i> _{h1} [GeV]	<i>m_{h2}</i> [GeV]	H _T [GeV]	m _{ℓℓ} [GeV]	asymm.	m _{C1,2} (rej.) [GeV]	т _{с1,1} [GeV]	Lepton flavor
SR	≥ 3	[100,150]	[85, 135]	> 400	> 106.2	< 0.2	> 200		All
CR2b	= 2	[100,150]	[85, 135]		> 106.2	< 0.2	< 200	< 500	All
CR3b	= 3	![100,150]	![85, 135]	> 400	> 106.2	< 0.2		< 700	All
CR4b	≥ 4	![100,150]	![85, 135]		> 106.2	< 0.2			All
VR2b	= 2	[100,150]	[85, 135]				> 200	< 500	Opposite
VR3b1	≥ 3	![100,150]	[85, 135]	> 400					Opposite
VR3b2	≥ 3	![100,150]	![85, 135]	> 400					Opposite

All regions have \geq 4 jets with $p_{T} > 20$ GeV and 2 opposite-sign light leptons with $p_{T} > 40$ GeV

C1C1 SR: Subleading chargino mass

C1C1 SR: Leading lepton p_{T}

C1C1 CR2b: Subleading chargino mass Data/MC

C1N1: preselection Higgs masses

B