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Our goal: measure the Higgs potential V(®)

—m?(¢70)> + A(610)' 1+ > 5O

SM higgs

BSM Higgs
(SMEFT parameterization)

g
Concretely, we want to
observe dihiggs
production at the LHC
g
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The past: The future (?):

Cut and Count Machine Learning

CMS 138 b (13 TeV)
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https://www.nature.com/articles/s41586-022-04892-x
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https://www.nature.com/articles/s41586-022-04892-x

The test statistic g now includes shape information

Q(C|D) — Qrate(ch) = QShape(ClD)

(cg, Copds ct;ﬁ) Data

Likelihood ratio of
data | BSM hypothesis
to
data | SM hypothesis
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The test statistic g now includes shape information

Q(C|D) Qrate(ch) = QShape(ClD)

(cg, Copds ct;ﬁ) Data

Likelihood ratio of | jkelihood ratio for
data | BSM hypothesis Poisson events

to
data | SM hypothesis (cut and count)
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The test statistic g now includes shape information

Q(C|D) Qrate(ch) = QShape(CID)

(cg, coar ctg) Data

Likelinood ratio of | jkelihood ratio for Likelihood ratio for shapes
data | BSM hypothesis Poisson events of kKinematic distributions
to (cut and count) (machine learning)

data | SM hypothesis
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SMEFT Operators in Detail

Symbol Operator Meaning

qu (¢T¢ . %)3 trilinear

coupling

Opa | du(g7p)om(gf¢) | nmed

top-Yukawa

2 —— ~
Otgb (pTp — %)@t + h.c. coupling




These operators result in a zoo of diagrams...

SMEFT diagrams
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...whose inclusion changes the shapes of kinematic features

Our production channel: hh — bbyy

Simulation pipeline: MadGraph (SMEFT@NLO model) — Pythia — Delphes
Collider setup: FCC-hh (100 TeV, 30/ab)
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“BM” = shape benchmarks from 2304.01968 **see backups for background distribution
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https://arxiv.org/abs/2304.01968

1D coupling coefficients can be recovered!
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1D coupling coefficients can be recovered!
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2D coupling coefficients can be recovered!

100 TeV, 30 100 TeV, 30 100 TeV, 30
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Mastandrea, Constraining through ML



Adding shape information of kinematic observables to
cut-and-count analyses can greatly improve their constraining power
Future investigations
e More realistic background modeling (with uncertainties)

e Balancing signal-enhancing cuts and event preservation for classifier
testing

e Expanding the Wilson coefficient space
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Backup slides
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SMEFT Operators in Detail

Operator Explicit form
Oy (pTp — )3
Osa 0u(¢79)0" (¢ 9)
Ogp (¢"D*)' (¢ Dy )
Ot (pTp — ”7)2thb + h.c.
Osc (97 — % )G G,

Oic  19s (@T“”TAt)ngﬁ,, + h.c.
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Relevant background processes for dihiggs

1 bbyy
1 bbjy
ey
—
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- In this project, we use the bbyy process as a proxy for all backgrounds

- Background feature shapes do not vary with the SMEFT coefficients c, ¢ ,, C,,
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Kinematic features with QCD background

Density
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In this project, we use the bbyy process as a proxy for all backgrounds

- Background feature shapes do not vary with the SMEFT coefficients ¢, ¢
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The cut flow and event yields

HL-LHC, 14TeV, 3ab™ " Future Collider, 100 TeV, 30ab~*
Signal Background Signal Background
Events Retention Events Retention Events Retention Events  Retention
Start 257 100% - - 89,604 100% — -
+ tagging & efficiencies 95 37.1%  3.22x10* 100% 29,600 33.0%  3.63x10° 100%
+ kinematic cuts 49 18.9% 1.26x10* 39.1% 11,100 12.3% 1.41x10° 38.8%
+ my, windows 15 5.89%  5.80x10% 1.80% 3,950 4.40%  5.91x10* 1.62%
+ angular cuts 13 4.92% 7.76x10" 0.24% 3,600 4.02% 8.21x10% 0.23%
S/B=0.16 S/B = 0.44
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Mixture models

To learn the likelihood ratio of mixture models, e.qg.

data = signal (sig) + (bkg)

it is useful to decompose the ratio of mixtures into sums of ratios of components
-1 -1
data 1 sig 0 bkg 0 sig 0 bkg 0

+ + +
data 0 sig 1 sig 1 bkg 1 bkg 1

These component ratios are much easier for classifiers to learn!
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Constructing confidence intervals from g

+—>

10 confidence
interval
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Neural networks and training

Architecture: Dense Neural Networks with 2 layers of 32 nodes

Training: batch size of 1024, weight decay 1e-4, learning rate of 1e-3 that

reduces if the validation loss stagnates. Train until validation loss stagnates for
20 epochs.

Train-val split: 80-20

To mitigate the stochastic nature of network training, we ensemble the outputs
of five networks with different initial random seeds.
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14 TeV Results: 1D
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14 TeV Results: 2D
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