Constraining the Higgs Potential Shape with Machine Learning

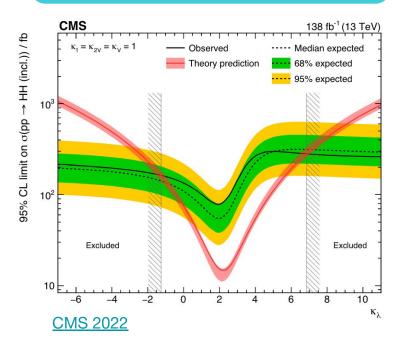
Radha Mastandrea

In collaboration with Benjamin Nachman and Tilman Plehn

DPF-PHENO 05/13/2024

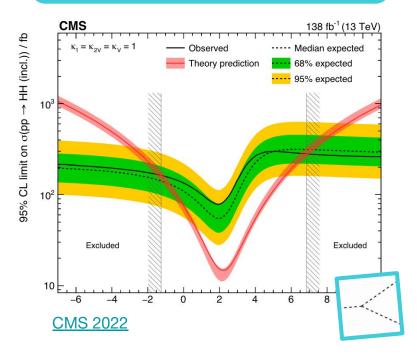
Our goal: measure the Higgs potential $V(\Phi)$

The past: Cut and Count



The future (?): Machine Learning

The past: Cut and Count



The future (?): Machine Learning

The test statistic q now includes shape information

$q(c|D) = q_{ ext{rate}}(c|D) + q_{ ext{shape}}(c|D)$

Likelihood ratio of data | BSM hypothesis to data | SM hypothesis

The test statistic q now includes shape information

$$q(c|D) = q_{ ext{rate}}(c|D) + q_{ ext{shape}}(c|D)$$

Likelihood ratio of data | BSM hypothesis to data | SM hypothesis

Likelihood ratio for Poisson events (cut and count)

The test statistic q now includes shape information

$$q(c|D) = q_{\text{rate}}(c|D) + q_{\text{shape}}(c|D)$$

Likelihood ratio of data | BSM hypothesis to data | SM hypothesis

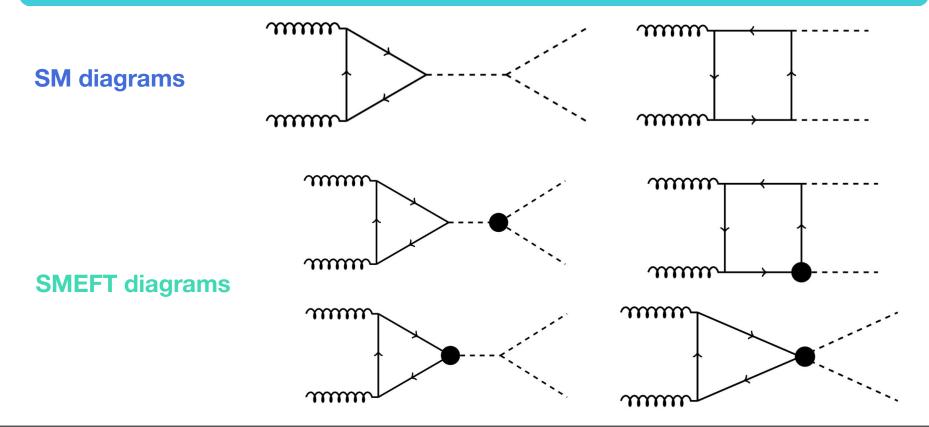
Likelihood ratio for Poisson events (cut and count)

Likelihood ratio for shapes of kinematic distributions (machine learning)

SMEFT Operators in Detail

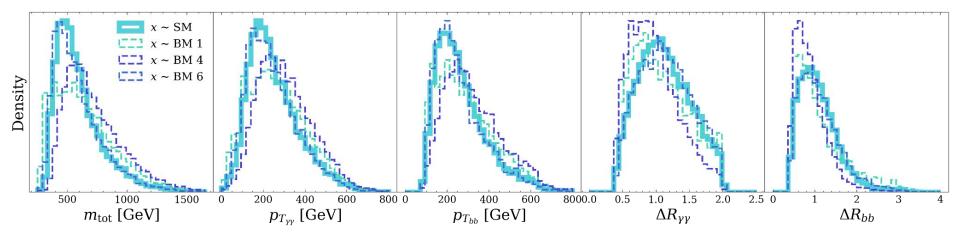
Symbol	Operator	Meaning		
\mathcal{O}_{ϕ}	$(\phi^{\dagger}\phi-rac{v^2}{2})^3$	trilinear coupling		
$\mathcal{O}_{\phi d}$	$\partial_{\mu}^{\ \ \prime}(\phi^{\dagger}\phi)\partial^{\mu}(\phi^{\dagger}\phi)$	dynamical coupling		
$\mathcal{O}_{t\phi}$	$(\phi^{\dagger}\phi - \frac{v^2}{2})\overline{Q}t\tilde{\phi} + \text{h.c.}$	top-Yukawa coupling		

These operators result in a zoo of diagrams...



...whose inclusion changes the shapes of kinematic features

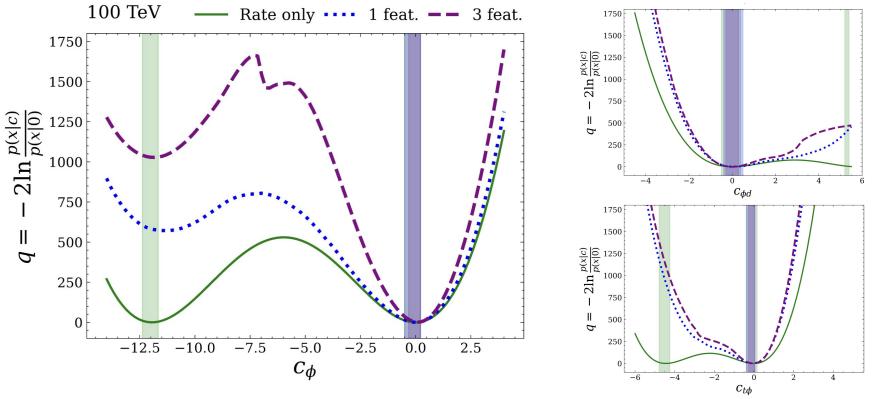
Our production channel: $hh \rightarrow bb\gamma\gamma$ Simulation pipeline: MadGraph (SMEFT@NLO model) \rightarrow Pythia \rightarrow Delphes Collider setup: FCC-hh (100 TeV, 30/ab)



"BM" = shape benchmarks from <u>2304.01968</u>

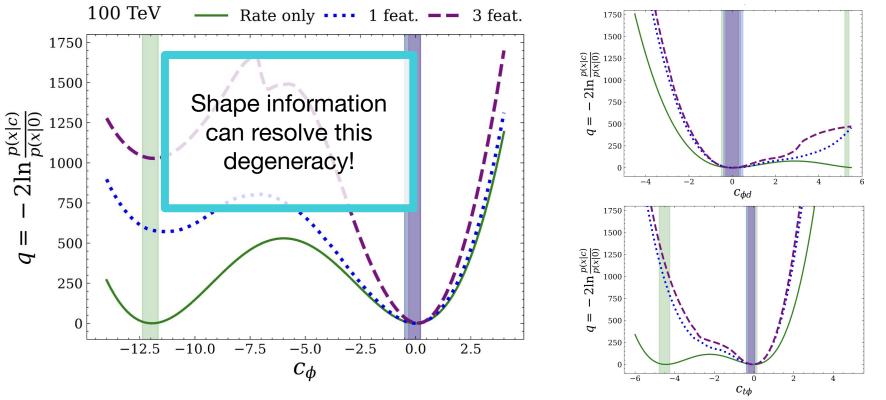
**see backups for background distribution

1D coupling coefficients can be recovered!



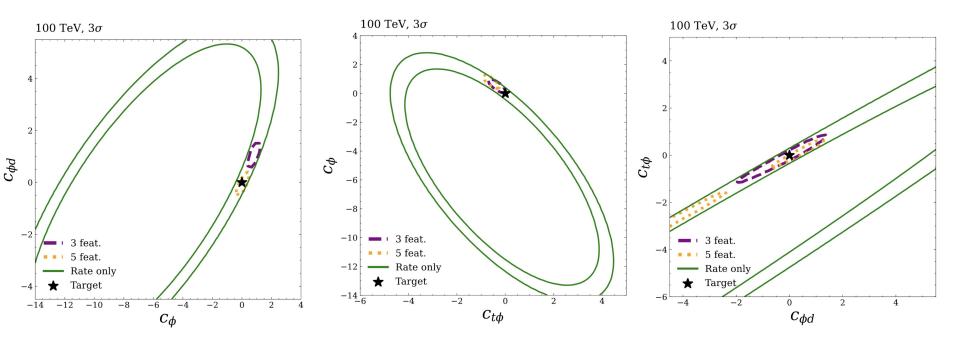
**see backups for HL-LHC projections

1D coupling coefficients can be recovered!



**see backups for HL-LHC projections

2D coupling coefficients can be recovered!



**see backups for HL-LHC projections

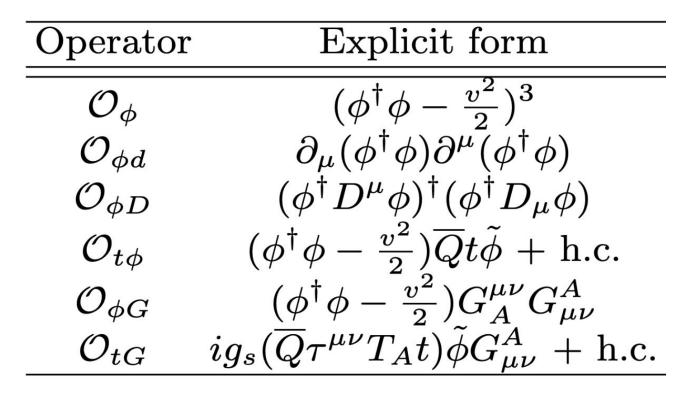
Adding shape information of kinematic observables to cut-and-count analyses can greatly improve their constraining power

Future investigations

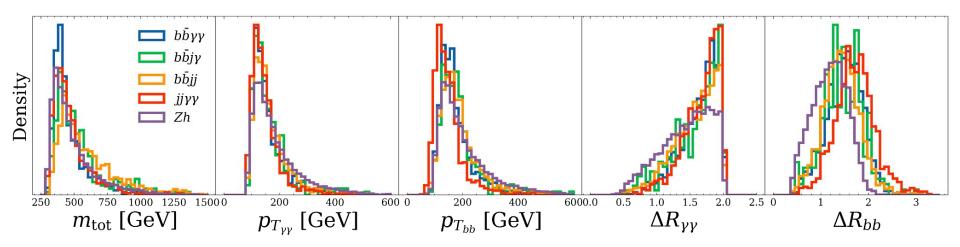
- More realistic background modeling (with uncertainties)
- Balancing signal-enhancing cuts and event preservation for classifier testing
- Expanding the Wilson coefficient space

Backup slides

SMEFT Operators in Detail

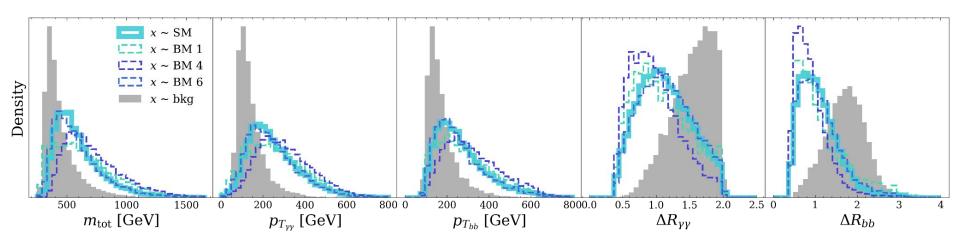


Relevant background processes for dihiggs



- In this project, we use the *bbyy* process as a proxy for all backgrounds
- Background feature shapes do not vary with the SMEFT coefficients c_{ϕ} , $c_{\phi d}$, $c_{t\phi}$

Kinematic features with QCD background



- In this project, we use the *bbyy* process as a proxy for all backgrounds
- Background feature shapes do not vary with the SMEFT coefficients c_{ϕ} , $c_{\phi d}$, $c_{t\phi}$

The cut flow and event yields

	HL-LHC, 14TeV, $3ab^{-1}$					Future Collider, 100 TeV, $30ab^{-1}$			
	Signal		Background		Signal		Background		
	Events	Retention	Events	Retention	Events	Retention	Events	Retention	
Start	257	100%	_	_	$89,\!604$	100%	_	_	
+ tagging & efficiencies	95	37.1%	3.22×10^4	100%	$29,\!600$	33.0%	3.63×10^{6}	100%	
+ kinematic cuts	49	18.9%	1.26×10^{4}	39.1%	11,100	12.3%	1.41×10^{6}	38.8%	
$+ m_h$ windows	15	5.89%	5.80×10^{2}	1.80%	$3,\!950$	4.40%	5.91×10^4	1.62%	
+ angular cuts	13	4.92%	7.76×10^{1}	0.24%	$3,\!600$	4.02%	8.21×10^{3}	0.23%	

S/B ≈ 0.16

 $S/B \approx 0.44$

To learn the likelihood ratio of *mixture models*, e.g.

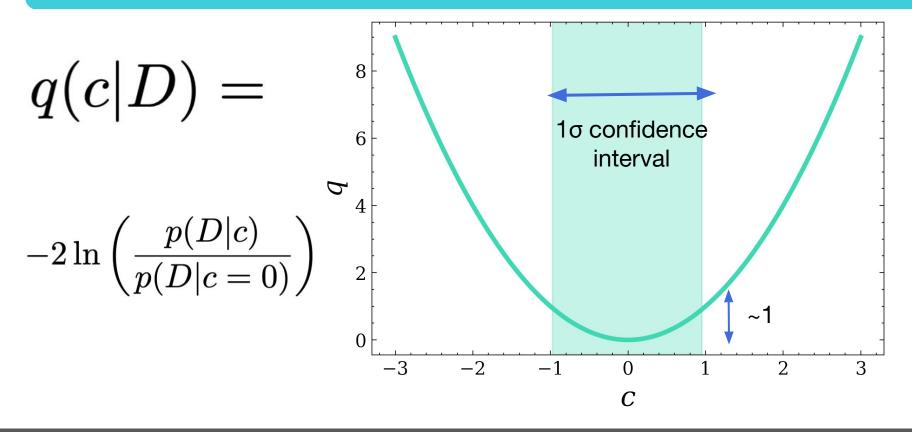
data = signal (sig) + (bkg)

it is useful to decompose the ratio of mixtures into sums of ratios of components

$$\frac{data 1}{data 0} = \left(\frac{sig 0}{sig 1} + \frac{bkg 0}{sig 1} \right)^{-1} + \left(\frac{sig 0}{bkg 1} + \frac{bkg 0}{bkg 1} \right)^{-1}$$

These component ratios are much easier for classifiers to learn!

Constructing confidence intervals from q



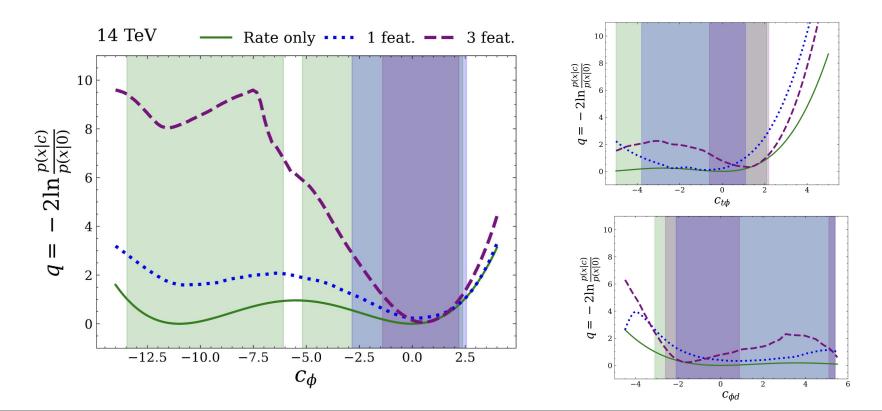
Architecture: Dense Neural Networks with 2 layers of 32 nodes

Training: batch size of 1024, weight decay 1e-4, learning rate of 1e-3 that reduces if the validation loss stagnates. Train until validation loss stagnates for 20 epochs.

Train-val split: 80-20

To mitigate the stochastic nature of network training, we **ensemble** the outputs of five networks with different initial random seeds.

14 TeV Results: 1D



14 TeV Results: 2D

