Optimal Celestial Bodies for Dark Matter Detection

Rebecca Leane and Joshua Tong

arXiv: 2405.05312

PHENO 2024

Why use celestial bodies for dark matter detection?

What celestial body is the best dark matter detector?

3

Dark matter energy injection (short decay length)

• Dark matter from Galactic halo may scatter and settle inside object

• Dark matter annihilates to SM and the energy is **injected** into body.

• SM particles **heat** the object

Dark matter SM flux (long decay length)

• Dark matter annihilates to SM and the energy **escapes**.

Celestial body properties

Celestial bodies have relevant properties as dark matter detectors

- Escape velocity (density)
 - Dense objects efficiently capture dark matter with low interaction cross sections
- Radius
 - Bigger object captures more dark matter. Large objects are more luminous and easier to detect.
- Core temperature
 - High temperature can give thermal kicks to dark matter to escape the gravitational potential (evaporate)

Location properties

The location and environment of a celestial body impacts the feasibility of a search

- Dark matter density
 - High dark matter mass density means more dark matter mass available to be captured
- Dark matter velocity
 - Slow moving dark matter is easier to capture. Therefore, low dark matter velocity environments are optimal
- Distance
 - The closer the object is to the telescope or detector, the larger the flux will be. Flux is inversely proportional to distance squared.

7

The landscape

Assumptions go into this:

- Mediator
- Detectability
- Observing time

Signal dependence on object and mediator properties

- DM signal proportional to survival probability
- SM flux searches typically assume survival probability ~ 1
- Survival depends on mediator properties
- Heat and survival interplay

- Quantify dark sector parameters that lead to energy injection and gamma rays
- Intersecting space
- No single best object!
- Many assumptions in cross section sensitivities
- Mediator properties lead to different signals

Stellar search

- We show a previously overlooked search
- GC Stars are more sensitive to light mediators because of their distance
- Mediator assumptions are important!

Summary

• Using celestial bodies provides complementary information about the dark sector

• Quantify the dependence on model class **assumptions** and **detectability**

• As an example, deconstructing these assumptions leads us to a new search using the stellar population at the galactic center

Thank you, questions?

 Only dense objects at small cross sections

A wide variety of objects

	Celestial Body Properties					
	Escape velocity $[c]$	Mass $[\mathcal{M}_{\odot}]$	Radius $[R_{\odot}]$	T _{core} [K]	$\sigma_{ m tr} \ [m cm^2]$	
Neutron Star	0.7	1.4	10^{-5}	10^{5}	10^{-45}	
White Dwarf	10^{-2}	0.6	10^{-2}	10^{5}	10^{-41}	
Average MS Star	10^{-3}	0.3	0.3	10 ⁷	10^{-36}	
Sun	10^{-3}	1	1	10^{7}	10^{-35}	
Brown Dwarf	10^{-3}	10^{-2}	0.1	$10^4 - 10^6$	10^{-35}	
Jupiter	10 ⁻⁴	10^{-3}	0.1	10^{4}	10^{-34}	
Earth	10^{-5}	10^{-6}	10^{-2}	10^{4}	10^{-33}	

Location properties

	Location Properties				
	DM Density $[\text{GeV}/\text{cm}^3]$	DM Velocity $[km/s]$	Distance [kpc]		
Local Position	0.4	270	< 0.1		
Globular Clusters	1000*	10	~ 2		
Galactic Bulge	$\sim 100 - 1000$	$\sim 100 - 200$	~ 7		
Nuclear Cluster	$\sim 10^{3} - 10^{6}$	$\sim 100 - 800$	~ 8		