Gauge Invariant Constraints on Gravitational Waves from A First-Order EWPT

AMHERST CENTER FOR FUNDAMENTAL INTERACTIONS Physics at the interface: Energy, Intensity, and Cosmic frontiers University of Massachusetts Amherst

Manuel Díaz In collaboration with: Michael Ramsey-Musolf and Leon Friedrich

nucleation rate?

nucleation rate?

II. **Importance**: The rate determines whether a transition occurred at all and whether signals that

can be detected by GW detectors.

nucleation rate?

- II. **Importance**: The rate determines whether a transition occurred at all and whether signals that can be detected by GW detectors.
- III. <u>Unique and New</u>: First gauge-invariant finite temperature perturbative calculation that explicitly uses the covariant gauge for the SU(2) Higgs model and compares it against lattice studies to check the reliability of the calculation.

nucleation rate?

- II. **Importance**: The rate determines whether a transition occurred at all and whether signals that can be detected by GW detectors.
- III. Unique and New: First gauge-invariant finite temperature perturbative calculation that explicitly uses the covariant gauge for the SU(2) Higgs model and compares it against lattice studies to check the reliability of the calculation.
- IV. **Implications**: Our results therefore show that such a gauge-invariant framework should be reliably applicable to BSM physics models.

Cosmic History

Cosmic History

Cosmic History

Was there a FOPT during the electroweak epoch?

Credit: David Weir arXiv:1705.01783 [hep-ph]

Gravitational Waves from a First Order EWPT

1. Bubble Collisions

Credit: David Weir arXiv:1705.01783 [hep-ph]

Gravitational Waves from a First Order EWPT

University of Massachusetts Amherst

1. Bubble Collisions

2. Acoustic Waves

Credit: David Weir arXiv:1705.01783 [hep-ph]

Gravitational Waves from a First Order EWPT

University of Massachusetts Amherst

1. Bubble Collisions

2. Acoustic Waves

3. Turbulence

Credit: David Weir arXiv:1705.01783 [hep-ph]

Gravitational Waves from a First Order EWPT

University of Massachusetts Amherst

The energy density of GWs vs. frequency for a variety of detectors and sources.

University of Massachusetts Amherst

Page 14

Credit: arXiv: Christopher Moore, etc. 1408.0740 [gr-qc]

Gravitational Wave Detectors

The energy density of GWs vs. frequency for a variety of detectors and sources.

University of Massachusetts Amherst

Page 15

Credit: arXiv: Christopher Moore, etc. 1408.0740 [gr-qc]

Gravitational Wave Detectors

Page 16

Gravitational Wave Constraints

Credit: Tommi Markkanen,arXiv:1809.0692 3 [astro-ph.CO]

Page 17

 $\Gamma = A e^{-S_3/T}$

 $V(\varphi)$

0

Gravitational Wave Constraints

Credit: Tommi Markkanen,arXiv:1809.0692 3 [astro-ph.CO] The inverse duration of the phase transition is given by:

$$rac{eta}{H_{*}}=\,T_{*}rac{d}{dT}igg(rac{S_{3}\left(T
ight)}{T}igg)_{T=T_{*}},\, ext{where}$$

 T_* is the temperature at which the phase transition occurs and $H_* = H(T_*)$ is the Hubble parameter at T_* . $_{V(\varphi)}$ University of Massachusetts Amherst

Page 18

Tunneling Rate

 $\Gamma = A e^{-S_3/T}$

Gravitational Wave Constraints

Credit: Tommi Markkanen,arXiv:1809.0692 3 [astro-ph.CO] The inverse duration of the phase transition is given by:

$$rac{eta}{H_{*}}=\,T_{*}rac{d}{dT}igg(rac{S_{3}\left(T
ight)}{T}igg)_{T=T_{*}},\, ext{where}$$

 T_* is the temperature at which the phase transition occurs and $H_* = H(T_*)$ is the Hubble parameter at T_* .

The strength of the phase transition is given by:

 $lpha=rac{30L(T_*)}{\pi^2g_*(T_*)T_*^4}, ext{ where }$

 $L({T}_*) = \left[T rac{d}{dT} V[\eta(T),T]
ight]_{T=T_*}$

 $\eta(T)$ is the VEV of the true vacuum at temperature T.

Gravitational Wave Constraints

Tunneling Rate

 $\Gamma = A e^{-S_3/T}$

Credit: Tommi Markkanen,arXiv:1809.0692 3 [astro-ph.CO]

$$Z \,=\, Trig[e^{-eta H}ig] \,=\, \int_{PBC} \mathcal{D}\phi e^{-\int_0^eta d au\int d^3x\,\mathcal{L}_{ ext{E}}[\phi(x)]}$$

Page 20

Finite Temperature QFT

$$Z \,=\, Trig[e^{-eta H}ig] \,=\, \int_{PBC} \mathcal{D}\phi e^{-\int_0^eta d au \int d^3x\, \mathcal{L}_{ ext{E}}[\phi(x)]}$$

Page 21

PBC (Periodic Boundary Conditions)

 $\phi(0,x)\,=\,\phi(eta,x)$

Finite Temperature QFT

$$Z \,=\, Trig[e^{-eta H}ig] \,=\, \int_{PBC} \mathcal{D}\phi e^{-\int_0^eta d au\int d^3x\,\mathcal{L}_{ ext{E}}[\phi(x)]}$$

PBC (Periodic Boundary Conditions)

$$\phi(0,x) = \phi(eta,x) \longrightarrow \omega_n = rac{2\pi n}{eta}$$
Matsubara frequencies.

University of Massachusetts Amherst

$$Z \,=\, Trig[e^{-eta H}ig] \,=\, \int_{PBC} \mathcal{D}\phi e^{-\int_0^eta d au\int d^3x\,\mathcal{L}_{ ext{E}}[\phi(x)]}$$

PBC (Periodic Boundary Conditions)

 $\phi(0,x) = \phi(eta,x)$ $\longrightarrow \omega_n = rac{2\pi n}{eta}$ Matsubara frequencies.

Quantization of the frequencies

University of Massachusetts Amherst

$$Z \,=\, Trig[e^{-eta H}ig] \,=\, \int_{PBC} \mathcal{D}\phi e^{-\int_0^eta d au\int d^3x\,\mathcal{L}_{ ext{E}}[\phi(x)]}$$

PBC (Periodic Boundary Conditions)

$$\phi(0,x) \,=\, \phi(eta,x) {-} {-} \omega_n = {2\pi n \over eta}$$

Matsubara frequencies.

Quantization of the frequencies

ncies
$$\longrightarrow \int \frac{d^4k}{(2\pi)^4} \to \frac{1}{\beta} \sum_n \int \frac{d^3k}{(2\pi)^3}$$

University of Massachusetts Amherst

High-T expansion using the bosonic one-loop function:

Page 25

$$J_b(x) \equiv \frac{1}{2} \oint_P \ln(P^2 + x) = -\frac{\pi^2 T^4}{90} + \frac{T^2 x}{24} - \frac{T x^{3/2}}{12\pi} + \mathcal{O}(x^2) \; .$$

Finite Temperature QFT

High-T expansion using the bosonic one-loop function:

Page 26

$$J_b(x) \equiv \frac{1}{2} \oint_P \ln(P^2 + x) = -\frac{\pi^2 T^4}{90} + \frac{T^2 x}{24} - \frac{T x^{3/2}}{12\pi} + \mathcal{O}(x^2) \; .$$

$$\omega_n = 2\pi nT$$

Finite Temperature QFT

High-T expansion using the bosonic one-loop function:

Page 27

$$J_b(x) \equiv \frac{1}{2} \oint_P \ln(P^2 + x) = -\frac{\pi^2 T^4}{90} + \frac{T^2 x}{24} - \frac{T x^{3/2}}{12\pi} + \mathcal{O}(x^2) \; .$$

100.100.00

$$\omega_n = 2\pi nT$$

Nonzero matsubara modes mass scale $\, \sim \pi T$.

High-T expansion using the bosonic one-loop function:

0 10

Page 28

$$J_b(x) \equiv \frac{1}{2} \oint_P \ln(P^2 + x) = -\frac{\pi^2 T^4}{90} + \frac{T^2 x}{24} - \frac{T x^{3/2}}{12\pi} + \mathcal{O}(x^2) \; .$$

$$\omega_n = 2\pi nT$$

Nonzero matsubara modes mass scale $\sim \pi T$.

=> Valid for: $\mu \sim gT$

Finite Temperature QFT

Dimensional Reduction:

Scale	Validity	Dimension	Lagrangian	Fields	Parameters	Page 29			
Hard	πT	d+1	$\mathcal{L}_{ m 4d}$	$B_{\mu}, \Phi,$	μ^2,λ,g	. 490 20			
$\int \text{Step 1: Integrate out } n \neq 0 \text{ Matsubara modes}$									
Intermediate	gT	d	$\mathcal{L}_{ m 3d}$	$B_{3,i},B_0,\Phi_3$	$\mu_3^2,\lambda_3,g_3,m_{ m \scriptscriptstyle D},h_3,\kappa_3$				

University of Massachusetts

Amherst

3d Effective Field Theory

Dimensional Reduction:

Scale	Validity	Dimension	Lagrangian	Fields	Parameters				
Hard	πT	d+1	$\mathcal{L}_{ m 4d}$	$B_{\mu}, \Phi,$	μ^2,λ,g				
		$\int \text{Step 1: Integrate out } n \neq 0 \text{ Matsubara modes}$							
Intermediate	gT	d	$\mathcal{L}_{ m 3d}$	$B_{3,i},B_0,\Phi_3$	$\mu_3^2,\lambda_3,g_3,m_{ m \scriptscriptstyle D},h_3,\kappa_3$				

University of Massachusetts

Page 30

Thermal loops require daisy resummation of zero-mode masses:

In practice amounts to replacing field-dependent masses with thermal masses.

3d Effective Field Theory

PROBLEM!

University of Massachusetts Amherst

Page 31

Naive Calculation vs. Our Approach

PROBLEM! => Finite temperature QFT calculations yield gauge dependent results

University of Massachusetts Amherst

Page 32

Naive Calculation vs. Our Approach

PROBLEM! => Finite temperature QFT calculations yield gauge dependent results

University of Massachusetts Amherst

Page 33

U(1) Abelian Higgs model Example: Naive Calculation vs. Our Approach

Figure 1 in 🗲

Naive Calculation vs. Our Approach

Page 34

The key to going beyond the naive perturbative calculations :

Keep terms satisfying a power counting (Arnold & Espinosa 1994) in g wherein V_{LO} has a radiatively generated barrier.

Power Counting

The key to going beyond the naive perturbative calculations :

Keep terms satisfying a power counting (Arnold & Espinosa 1994) in g wherein V_{LO} has a radiatively generated barrier.

$$\lambda \sim g^3 \;, \qquad \mu_{
m eff}^2 \sim g^3 T^2 \;, \qquad \phi \sim T \sim rac{\mu}{g} \;.$$

Page 36

The key to going beyond the naive perturbative calculations :

Keep terms satisfying a power counting (Arnold & Espinosa 1994) in g wherein V_{LO} has a radiatively generated barrier.

$$\lambda \sim g^3 \;, \qquad \mu_{ ext{eff}}^2 \sim g^3 T^2 \;, \qquad \phi \sim T \sim rac{\mu}{g} \;.$$

$$V^{\text{eff}} = V_{g^3}^{\text{eff}} + V_{g^4}^{\text{eff}} + V_{g^{9/2}}^{\text{eff}} + \dots ,$$

$$Z = 1 + Z_g + Z_{g^{3/2}} + \dots .$$

Power Counting

Page 37

The key to going beyond the naive perturbative calculations :

Keep terms satisfying a power counting (Arnold & Espinosa 1994) in g wherein $V_{\rm LO}$ has a radiatively generated barrier.

$$egin{aligned} \lambda &\sim g^3 \,, & \mu_{ ext{eff}}^2 &\sim g^3 T^2 \,, & \phi &\sim T &\sim rac{\mu}{g} \,. \ & S_3 &= \, \mathcal{B}_0 \,+\, \mathcal{B}_1 \ & V^{ ext{eff}} &= V_{g^3}^{ ext{eff}} + V_{g^{9/2}}^{ ext{eff}} + \,v_{g^{9/2}}^{ ext{eff}} + \,\ldots \,, & \mathcal{B}_0 &= \, \int d^3 x \left(rac{1}{2} (\partial_i \phi_b)^2 + V_{ ext{LO}}(\phi_b)
ight) \ & Z &= 1 + Z_g + Z_{g^{3/2}} + \,\ldots \,, & \mathcal{B}_1 &= \, \int d^3 x \left(rac{1}{2} Z_{ ext{NLO}}(\partial_i \phi_b)^2 + \,V_{ ext{NLO}}(\phi_b)
ight) \end{aligned}$$

Power Counting

Page 39

Gauge-Invariant Gravitational Wave Constraints

The inverse duration of the phase transition is given by: $\frac{\beta}{H_*}$

Page 40

Gauge-Invariant Gravitational Wave Constraints

The inverse duration of the phase transition is given by: $\frac{\beta}{H_*}$ The strength of the phase transition is given by: α

Page 41

Gauge-Invariant Gravitational Wave Constraints

Thank You For Your Attention!

University of Massachusetts Amherst

References

- 1. arXiv:2112.08912 [hep-ph] Michael Ramsey-Musolf, Tuomas V. I. Tenkanen, etc
- 2. arXiv:1903.11604 [hep-ph] Michael Ramsey-Musolf, Tuomas V. I. Tenkanen, etc
- 3. arXiv:1705.01783 [hep-ph] David J. Weir
- 4. arXiv:1809.06923 [astro-ph.CO] Tommi Markkanen, etc
- 5. arXiv: 1408.0740 [gr-qc] Christopher Moore, etc.
- 6. arXiv:0709.2773 [hep-ph] M. Vepsalainen
- 7. Finite Temperature Field Theory by A. Das