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I. Scientific Question: If FOPT during electroweak epoch, then how can we compute bubble 

nucleation rate?

II. Importance: The rate determines whether a transition occurred at all and whether signals that 

can be detected by GW detectors.

III. Unique and New: First gauge-invariant finite temperature perturbative calculation that explicitly 

uses the covariant gauge for the SU(2) Higgs model and compares it against lattice studies to 

check the reliability of the calculation.

IV. Implications: Our results therefore show that such a gauge-invariant framework should be 

reliably applicable to BSM physics models.
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2. Acoustic Waves

3. Turbulence
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The energy density of GWs vs. frequency for a variety of detectors and sources.

T ~ 100 GeV

Credit: arXiv: Christopher Moore, 

etc. 1408.0740 [gr-qc] 

http://arxiv.org/abs/1408.0740
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High-T expansion using the bosonic 
one-loop function:

Nonzero matsubara modes mass scale    

=> Valid for: 
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Dimensional Reduction:

Thermal loops require daisy resummation of zero-mode masses:

In practice amounts to replacing field-dependent masses with thermal masses.
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PROBLEM! => Finite temperature QFT calculations yield gauge dependent results

U(1) Abelian Higgs model Example: Naive Calculation vs. Our Approach

Figure 1 in 
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The inverse duration of the phase transition is given by:

The strength of the phase transition is given by:

Gauge-Invariant Gravitational Wave Constraints



Thank You For Your Attention!
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