Unconventional Track Signatures at a 10 TeV Muon Collider

Leo Rozanov 05/16/2024

Contents

- Muon Collider Basics
- Tracking Performance
- Long Lived Particles

What is a Muon Collider

- Colliding Muons: μ^+ and μ^-
- Muons are **fundamental**, like electrons
- Muons are **207 times** more massive than electrons
- Leptons are the ideal probes of short-distance physics
 - All the energy is stored in the colliding particle
 - No energy "waste" due to parton distribution functions
- Best of both worlds!

10 TeV Motivation

A 10 TeV Collider is required to:

See <u>here</u> for further motivation

- Explore extensions of the standard model
- Investigate dark matter and exotic particles
- Address the hierarchy problem

Design exists for a \sqrt{s} = 3 TeV detector (see <u>paper</u>), working on a 10 TeV

design

Leo Rozanov

Challenges

- Muons only have a lifetime of **2µs**
- Muons decaying in the pipeline lead to a shower of particles onto the detectors, called Beam
 Induced Background (BIB)
- BIB contains 13 EeV (million TeV)!
- BIB track properties:
 - Low number of hits
 - Low pT
 - Non-pointing
 - Out of time

see <u>here</u> for more details!

Detector Design

- Detector design: Tracker, Solenoid, ECAL, HCAL, Muon detector
- Shielding nozzles cover the beam as it enters the detector

INAGALA		
Sub Detector	Size	Timing
Vertex Detector	25 μm x 25 μm	30 ps
Inner Tracker	50 µm x 1 mm	60 ps
Outer Tracker	50 µm x 10 mm	60 ps

TDACKED

Leo Rozanov

Tracking Performance

Leo Rozanov

How well do we reconstruct standard (prompt, high pT) tracks:

- The fake rate, how often we reconstruct unmatched tracks
 - This is only a real issue with BIB
- The reconstruction efficiency, how often we reconstruct truth particles
- The **resolution**, how well can our detector resolve pT and d_0

Simulation Setup

Leo Rozanov

BIB Hits and Fake Tracks

Leo Rozanov

Basic Track Distributions

- First compare truth-matched tracks to fake tracks
- Come up with cuts to eliminate fake tracks
 - (Only look at BIB; without BIB there are almost no fake tracks)

Leo Rozanov

Basic Track Distributions

• The following track cleaning cuts are made:

• $p_T > 1$ GeV, $|d_0| < 0.1$ mm, and nhits > 4

Leo Rozanov

Reconstruction Efficiency

- Endcap has more complex geometry than Barrel, lowering efficiency
- Fakes that survive cleaning: 0.04%
- Efficiency with BIB overlaid w/o cleaning: 96%
- Efficiency lost from cleaning: 6%

Leo Rozanov

d_0 Resolution

- Resolutions: first compute residuals, then take the width of those distributions
- (Residual is Δ between truth and reconstructed)
- True d_0 is 0 residual is just the displacement from 0
- Resolution is symmetric in θ , worse in the endcaps, and better in the barrel
- High p_T tracks curve less \rightarrow easier to trace back d_0

p_T Resolution

• $\Delta p_T / p_T = (\text{truth } p_T - \text{reco } p_T) / \text{truth } p_T$ for

matched muons

- Again, resolution is symmetric in θ , worse in the endcaps, and better in the barrel
- High p_T tracks curve less \rightarrow harder to resolve p_T

Conclusions for standard tracking

- Standard tracking status
 - Good background rejection
 - High efficiency
 - Good resolution
- For muon Gun data we look good! (NB: Paper forthcoming!)
- Now we want to understand how well we can do with more challenging scenarios

Long Lived Particles

Leo Rozanov

Motivation

- Want to make sure we're sensitive to BSM physics
- How do BIB selections affect our ability to reconstruct

displaced/slowly moving tracks from LLPs?

• In particular we will use the Stau - supersymmetric partner

of the tau - as a benchmark model that gives us multiple

LLP signatures

• Decay products can be reconstructed as displaced tracks

Muons \rightarrow *Staus* \rightarrow *Taus* + *Gravitinos*

Leo Rozanov

Generation

Leo Rozanov

Simulation

- Use Geant4 to simulate interactions with the detector
- Need to loosen timing window because Staus are slowly moving
- BIB still generated and simulated separately

Leo Rozanov

Reconstruction

Requirements for Stau tracks:

- Loosen timing window
- Loosen track impact parameter requirements
- Adapt track seeding

Status Code Issue

- We had challenges passing staus with certain hepMC status codes to Geant4 for simulation
- Discussed with the dd4hep team <u>here</u>, and they've now included a way to set alternative decay status
- Still sorting out a few things but issue mostly fixed

Stau Hits

 We are beginning to be able to see stau hits in simulation but not for every situation – iterating with dd4hep personnel

Leo Rozanov

Next Steps

• Once we have all particles properly simulated, we can move on and ensure we are

able to reconstruct the tracks

- With tracks properly reconstructed for signal samples, we can then add BIB and see if
 - our track reconstruction is robust enough to handle the large amount of background

10 TeV Studies:

- Federico Meloni, Thomas Madlener, Priscilla Pani (DESY); Daniele Calzolari (CERN).
- Karri DiPetrillo, Ben Rosser, Anthony Badea (UChicago).
- Tova Holmes, Larry Lee, Charles Bell, Ben Johnson, Micah Hillman, Adam Vendrasco (UTK).
- Sergo Jindariani, Kevin Pedro, (FNAL); Rose Powers (Yale).
- Simone Pagan Griso (LBNL); Isobel Ojalvo, Junjia Zhang, Elise Sledge (Princeton).

LLPs Studies:

• Karri DiPetrillo, Ben Rosser, Tate Flicker, Kane Huang, Noah Virani (UChicago).

Backup

Leo Rozanov

Existing Detector Design

Existing detector concept based on CLIC with addition of shielding nozzles to reduce BIB.

Leo Rozanov

Reconstruction Efficiency

• Endcap plots + theta after cleaning

Leo Rozanov

Resolution

- We want to see how the resolution varies with observable parameters such as η/θ and p_T
- First, we plot the residuals (Δ)
 - $\Delta p_T / p_T$ = truth p_T reco p_T / truth p_T for matched muons
 - (True d_0 and z_0 are 0 so the residual is just the displacement from 0)

Resolution

• Then we fit a gaussian to them to see if the data is as expected and to extract the standard deviation

Leo Rozanov

p_T and d_0 Resolution

• BIB plots

Leo Rozanov

p_T and d_0 Resolution

• Against pT

Leo Rozanov

Analysis - Distributions

- Comparing MCPs (with status = 1), Staus, and tracks
- Most particles have < 200 GeV, but Staus have TeV energy
- See a track spike at eta ~ 2, probably due to BIB

Leo Rozanov

LLPs - Pointing

• First isolate hits in the Vertex Barrel Region (because it contains doublet layers)

Leo Rozanov