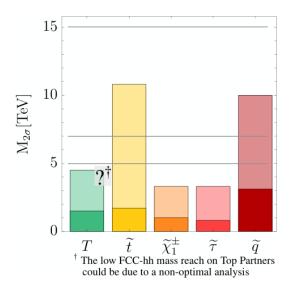
Light Dark Portals at Future Lepton Collider

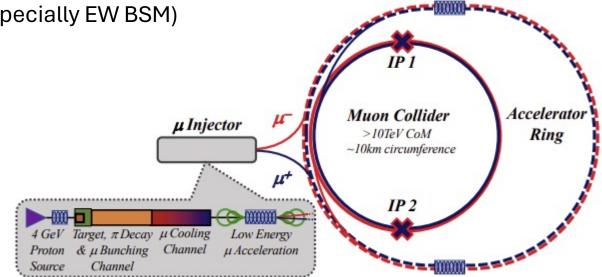
High energy μ 's vs High Intensity *e*'s

Sagar Airen

With – Edward Broadberry, Lorenzo Ricci, Gustavo Marques-Tavares

Muon Collider


• High Energy


10 TeV $\mu\mu$ collider ~ 100 TeV pp collider (especially EW BSM)

• High Precision

Clean environment

$$\mathcal{L}_{\rm int} \sim 10 \, {\rm ab}^{-1} \left(\frac{{\rm E}_{\rm cm}}{10 {\rm TeV}}\right)^2$$

Towards a Muon Collider, Accettura, Carlotta et. al.

The physics case of a 3 TeV muon collider stage, de Blas, Jorge et. al.

Muon Collider

- A strong physics case
 - EW BSM
 - Higgs Physics
 - Compositeness
 - Higgs Potential
 - Higgs Portal
 - Dark Matter
 - g-2
 - Etc.
 - What else?

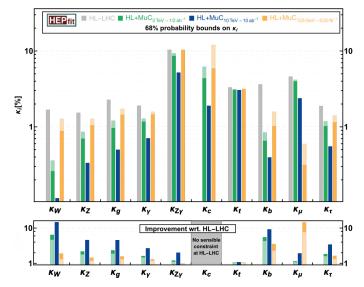
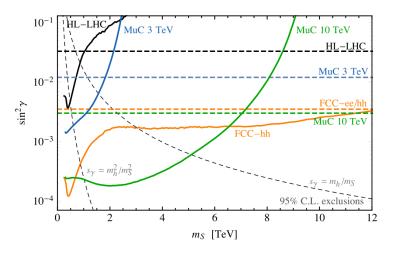
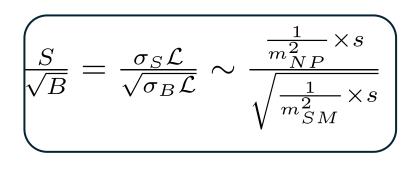
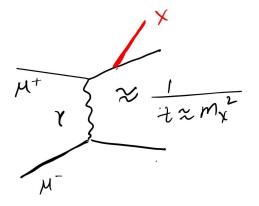
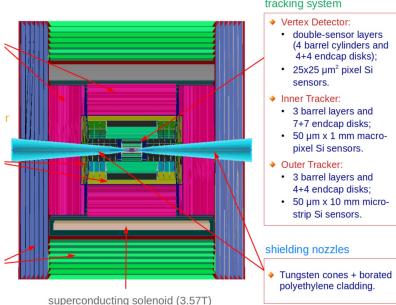



Fig. 82 Sensitivity to modified Higgs couplings in the κ framework. We show the marginalized 68% probability reach for each coupling modifier. For the 125 GeV MuC, light (dark) shades correspond to a luminosity of 5 (20) fb⁻¹. The same color code is used for the 3 TeV MuC with 1 or 2 ab⁻¹.

The physics case of a 3 TeV muon collider stage, de Blas, Jorge et. al.


Light Physics at Muon Collider


- Naively, direct search for invisible light new physics not the best idea
- Cross-section for s-channel production, when $m_{NP}^2 \ll s$, is roughly $\sigma_{prod} \sim \frac{1}{s}$
- Muon colliders overcome this because Luminosity scales $\sim s$


$$\frac{S}{\sqrt{B}} = \frac{\sigma_S \mathcal{L}}{\sqrt{\sigma_B \mathcal{L}}} \sim \frac{\frac{1}{s} \times s}{\sqrt{\frac{1}{s} \times s}}$$

Forward Detectors at Muon Collider

- μ interact very weakly and hence can pass through stuff and can be detected in the forward region $$^{\rm tracking \, system}$$
- Therefore, t-channel processes can be tagged efficiently

- How effective is this? We look for dark portals...
- We also compare the reach to other future lepton colliders

Invisible Higgs from forward muons at a muon collider, Ruhdorfer, Maximilian et. al.

Higgs Width and Couplings at High Energy Muon Colliders with Forward Muon Detection , Li, Peiran et. al.

Dark Portals

Well-motivated BSM paradigm

 $\mathcal{L} = \mathcal{L}_{SM} + \mathcal{L}_{dark} + \mathcal{L}_{int}$

- Possibilities at renormalizable level
 - Higgs Portal- $H^{\dagger}HS + H^{\dagger}HS^2$

Invisible Higgs from forward muons at a muon collider, Ruhdorfer, Maximilian et. al.

Higgs Width and Couplings at High Energy Muon Colliders with Forward Muon Detection , Li, Peiran et. al.

• Vector Portal -
$$B_{\mu\nu}F'^{\mu\nu}$$
 $\bar{\psi}\gamma^{\mu}\psi Z'_{\mu}$ Focus of this talk
• Neutrino Portal - $L\tilde{H}N$ Work in Progress

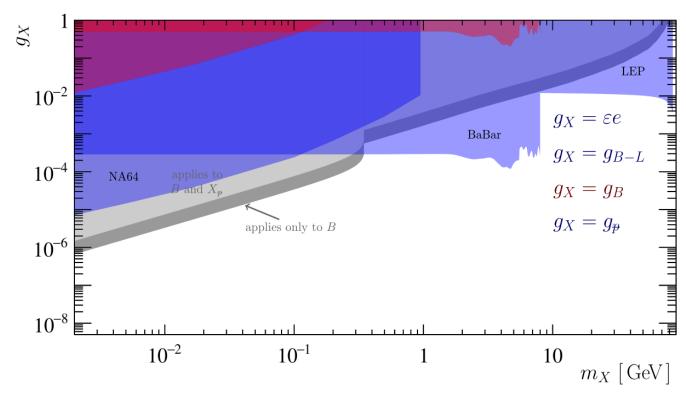
Muon Collider is a Neutrino Collider!

Heavy Neutral Leptons at Muon Colliders, Li, Peiran and Liu, Zhen and Lyu, Kun-Feng

Hypercharge Portal

• A new U(1) gauge boson that kinetically mixes with hypercharge

$$\mathcal{L}_{\text{gauge}} = -\frac{1}{4} \tilde{F}_{\mu\nu} \tilde{F}^{\mu\nu} - \frac{1}{4} B_{\mu\nu} B^{\mu\nu} - \frac{\epsilon}{2c_W} \tilde{F}_{\mu\nu} B^{\mu\nu} + \frac{1}{2} m_D^2 \tilde{A}_\mu \tilde{A}^\mu + |D_\mu H|^2 - V(H).$$


• After canonical normalization and diagonalization leads to

$$\frac{e\epsilon}{1-r}Z'_{\mu}\left(J_{\rm em}^{\mu}-\frac{r}{\cos^{2}\theta_{W}}J_{Y}^{\mu}\right)+\tilde{g}Z'_{\mu}J_{D}^{\mu},\quad r=\frac{m_{D}^{2}}{m_{Z}^{2}} \Rightarrow \mathcal{L}\supset\epsilon eZ'_{\mu}J_{\rm em}^{\mu} \text{ for } r\ll 1$$

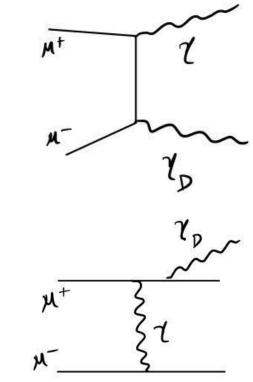
to $O(\epsilon)$.

Hypercharge portal (invisible)

• For
$$m_D^2 << m_Z^2$$
, $\mathcal{L} \supset \epsilon e Z'_\mu J^\mu_{\mathrm{em}}$

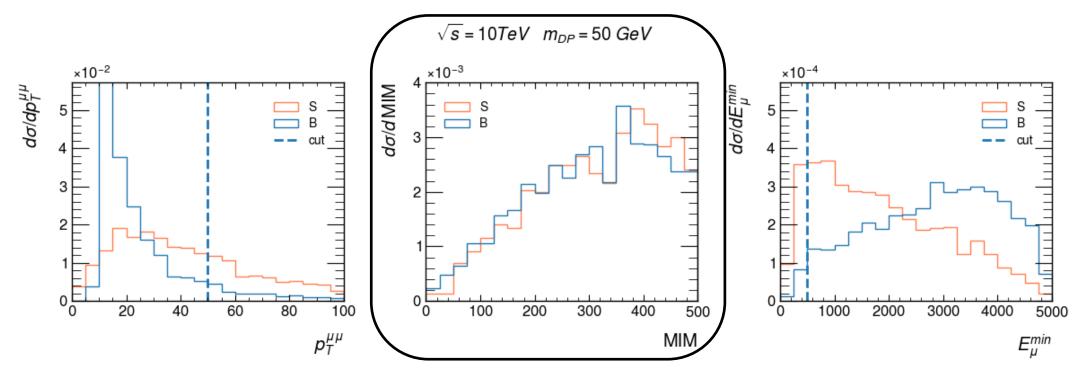
- We assume $\mathcal{B}(Z' \to \text{dark}) \approx 1$
- Existing constraints from LEP and BaBar

Serendipity in dark photon searches, Ilten et.al.

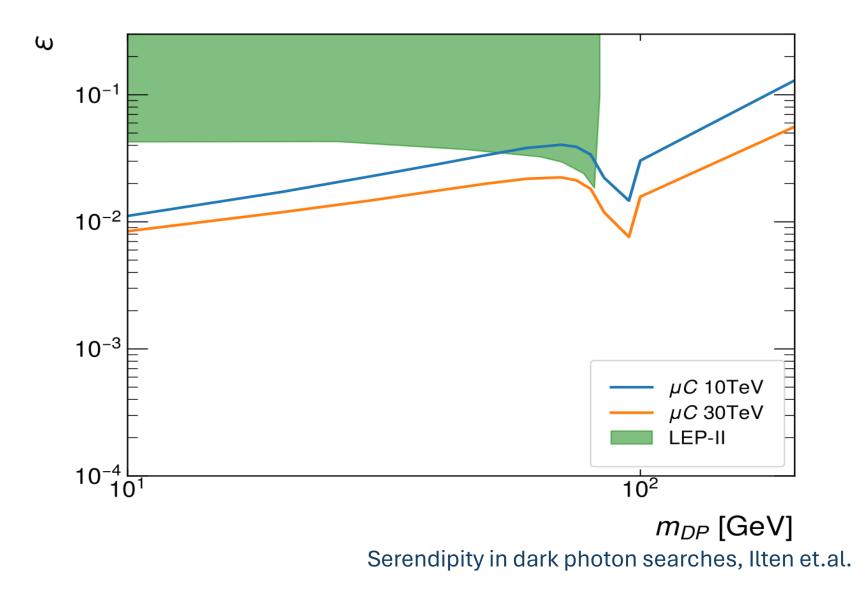

Hypercharge Portal at μ Collider

- We consider the following channels \circ Mono-photon (conventional search) $\mu^+ + \mu^- \rightarrow \gamma + \gamma_D$ \circ t-channel (forward search) $\mu^+ + \mu^- \rightarrow \mu^+ + \mu^- + \gamma_D$
- Primary Backgrounds • Monophoton

 $\mu^+ + \mu^- \rightarrow \gamma + Z(\text{inv.})$

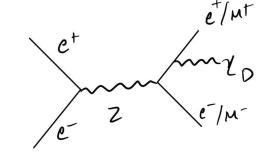

o t-channel

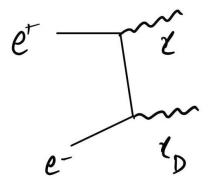
 $\mu^+ + \mu^- \rightarrow \mu^+ + \mu^- + \gamma/X$ (forward, undetected) or $\mu^+ + \mu^- + Z(\text{inv.})$



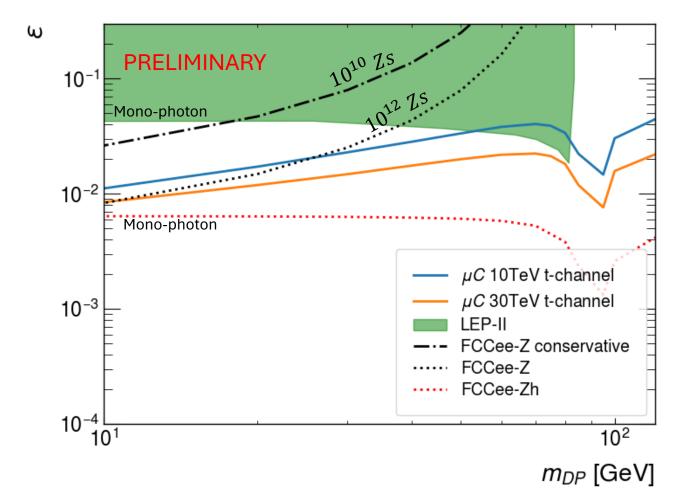
Hypercharge portal at μ collider

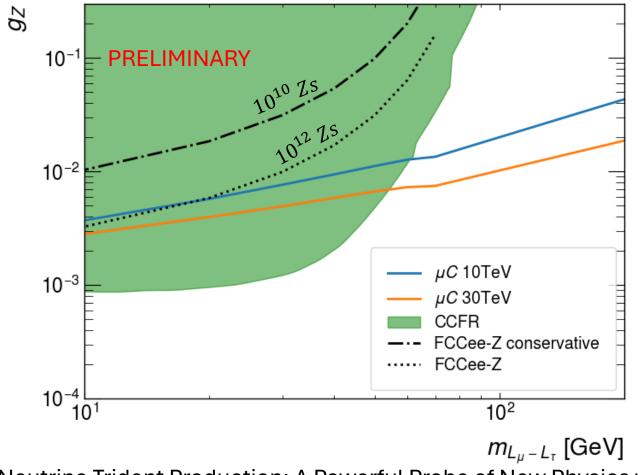
• Spectrum with detector effects using De10lphes


Hypercharge portal at μ collider

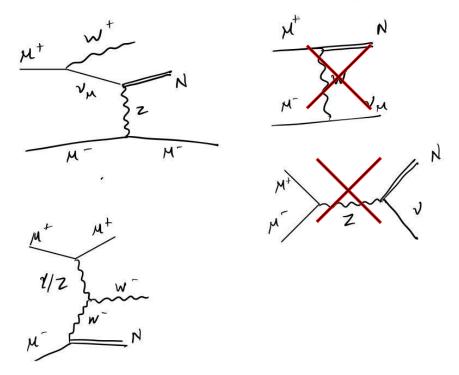

FCC-ee

• Rare Z decay, 10^{12} Zs!! For $m_D \ll M_Z$,

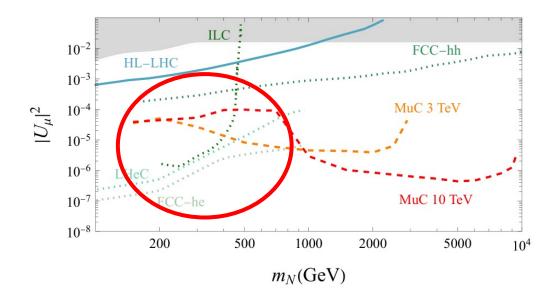

$$\Delta\Gamma_{Z\to\tau^{+}\tau^{-}}^{\text{FCC}} \lesssim \frac{\epsilon^{2} \alpha \Gamma_{Z}}{4\pi} \mathcal{B}(Z \to l^{+}l^{-}) \quad \Rightarrow \quad \epsilon \gtrsim 10^{-2}$$
$$\left(\Delta\Gamma_{Z\to\tau^{+}\tau^{-}}^{\text{FCC}} \approx \Delta\Gamma_{Z\to\tau^{+}\tau^{-}}^{\text{LEP}} \sqrt{\frac{N^{\text{LEP}}}{N^{\text{FCC}}}}\right)$$


• Mono- γ search at the ZH threshold ~ 10 ab^{-1}

Hypercharge portal at future lepton colliders


$L_{\mu} - L_{\tau}$ portal at future lepton colliders

Neutrino Trident Production: A Powerful Probe of New Physics with Neutrino Beams, Altmannshofer et.al.


Other Portals

• Neutrino Portal (invisible) – Results very soon

VBF like processes forward detectors can help

Reducing cosmological small scale structure via a large dark matterneutrino interaction: constraints and consequences, Bertoni et.al.

Heavy Neutral Leptons at Muon Colliders, Li, Peiran and Liu, Zhen and Lyu, Kun-Feng

Conclusions

- Future Lepton Collider are great probe of light invisible new physics
- Despite the high center of mass energy, a muon collider can explore new regions of parameter space for "light" dark portals
- FCC-ee would be one of the best probe for Dark Photons
- Perhaps, forward detector could also improve sensitivity to Neutrino Portals and Higgs Portal
- Watch out for our paper 2406.XXXX

Questions?