(Super)heavy Z'-Portal Dark Matter Scenario and Complementarity between Direct Dark Matter Detection Experiments and Z' Boson Searches at the LHC

Puja Das (Univ. Of Alabama)

In collaboration with

Nobuchika Okada(Univ. of Alabama) Talk@ Pheno2024

Introduction and Motivation:-

- ▶ Proposing Z' mediated dark matter production from incompletely thermalized plasma
- \blacktriangleright Finding mass bounds of dark matter and Z' from the complementarity between the dark matter search and Z' boson search at LHC

K ロ ▶ K 個 ▶ K 할 ▶ K 할 ▶ 이 할 → 9 Q Q →

 $U(1)_X$ extended Dark Matter Model:-

- ▶ $SU(3)_C \times SU(2)_L \times U(1)_Y \times U(1)_X$ scenario considered for incompletely thermalized DM generation.
- \triangleright 3 BSM ν_R , 1 BSM Higgs, 1 Dirac fermion dark matter considered in this model.

or $U(1)_X$ -breakin SM-Fermion

ζ pair production in thermal bath:-

 \blacktriangleright BSM Z' mediated ζ production cross section comes out to be $\sigma v|_{nR} = \frac{g_{\zeta}^2 g_{Z'}^2}{\pi} \sum_f N_c^f (Q_{A_f}^2 + Q_{V_f}^2) \frac{m_{\zeta}^2}{(4m_{\zeta}^2 - m_{Z'}^2)^2 + m_{Z'}^2 \Gamma_{Z'}^2}$ \bar{f} f ζ $\bar{\zeta}$ $\delta g_{Z'} \gamma_{\mu} (Q_{V_f} + Q_{A_f}) \diagdown\diagdown\diagdown\delta \eq{g_{\zeta}} \gamma_{\nu}$ Z'

Figure: Freeze-In Dark matter production from SM fermion annihilation

KORKARYKERKER POLO

Model Constraint from Early Universe:-

 \blacktriangleright Early universe p, n abundance constraints DM relic density with $\Omega_{DM} h^2 = 0.12$

▶ DM Yield satisfies Boltzmann equation

$$
\frac{dY}{dx} = -\frac{<\sigma v>}{x^2} \frac{s(m_\zeta)}{H_\zeta} (Y^2 - Y_{EQ}^2)
$$

- \triangleright We are considering ζ has never been in thermal equilibrium with plasma SM particle
- ▶ Considering $x_{RH} = m_C/T_{R_H} > 1$ and negligible initial abundance of ζ , $\varUpsilon(x_{R_H})=0,$ and the yield solution leads to

$$
Y_0 = \int_0^{x_{R_H}} \frac{s(m_\zeta)}{x^2 H(m_\zeta)} < \sigma v > Y_{EQ}^2 dT \tag{1}
$$

KID KA KERKER E VOOR

-where,
\n
$$
s(m_{\zeta}) = \frac{2\pi^2}{45} g_* m_{\zeta}^3
$$
\n
$$
Y_{EQ} = \frac{g_{DM}}{2\pi^2} \frac{x^2 m_{\zeta}^3}{s(m_{\zeta})} K_2(x)
$$
\n
$$
n_{EQ} = \frac{s(m_{\zeta}) Y_{EQ}}{x^3}
$$
\n
$$
H(m_{\zeta}) = \sqrt{\pi^2 g_*} 90 \frac{m_{zeta}^2}{M_p}
$$

Model Constraint from Early Universe:-

$$
\langle \sigma \nu \rangle = \frac{\sigma_{\zeta}^{2} g_{z}^{2}}{\pi} (9x_{H}^{2} + 14x_{H} + 16) \frac{m_{\zeta}^{2}}{(4m_{\zeta}^{2} - m_{z}^{2})^{2} + m_{z}^{2} r_{z}^{2}} \times \frac{g_{DM}^{2}}{64\pi^{4}} \frac{m_{\zeta}}{x} \frac{1}{n_{EQ}^{2}} \int_{4m_{\zeta}^{2}}^{\infty} ds s \sqrt{s - 4m_{\zeta}^{2}} K_{1}(\frac{x\sqrt{s}}{m_{\zeta}})
$$
(2)

▶ Non relativistic nature of dark matter density brings forth exponential suppression and thus keeps up with dark matter abundance constraint using $\Omega_{\zeta} h^2 = \frac{m_{\zeta}}{\rho_{\zeta}/l}$ $\frac{m_\zeta}{\rho_c/h_0} Y_0$,

Direct Detection Experiments to search Dark Matter :-

Figure: Schematic diagram of different dark matter searches

- ▶ Involves DM elastic scattering with lab target(can be Nucleon or electrons), by which target can get excited and (or) can attain recoil energy.
- ▶ De-excited state of target directly or indirectly emits different known form of SM particles, and can be detected by the detectors.
- ▶ Detection relies on the energy transferred, this method works the best, when DM mass is closer to th[at](#page-5-0) [of](#page-7-0) [t](#page-5-0)[he](#page-6-0) [t](#page-7-0)[a](#page-5-0)[rg](#page-6-0)[e](#page-7-0)[t.](#page-5-0)

 Ω

Direct Detection Constraints from LZ Experiment:-

▶ Spin-Independent cross section from LZ data gives

$$
\sigma_{SI-fitted} [Gev^{-2}] = 10^{-20} \times (1.162 + 0.0738 \frac{m_{\zeta}}{1 \, GeV}) \tag{3}
$$

 $\leftarrow \equiv$

 QQ

▶ DM of masses greater than 50 GeV has been considered.

DM-Nucleon Spin Independent Cross -section :-

▶ Spin-Independent cross section of DM-Nucleon elastic scattering mediated by Z' boson is calculated to be

$$
\sigma_{SI} = \frac{\mu_{\zeta N}^2}{\pi} \frac{g_{\zeta}^2 g_{Z'}}{m_{Z'}^4} [x_H (0.5 + \frac{Z}{A}) + 2]^2 \tag{4}
$$

▶ For Xenon target $Z = 54$, $A = 131$, $m_N = .983 \times 10^{-3}$ GeV ▶ 17' results lead to

$$
m_{\zeta} = \frac{1}{.285} \left[\frac{g_{\zeta}^2 g_{Z'}^2}{m_{Z'}^4} \frac{3.89[x_H(0.5 + \frac{Z}{A}) + 2]^2}{10^{-20} \times 0.983^{-2}} - 4.53 \right] \tag{5}
$$

Constraint on $g_{Z'}$ and $m_{Z'}$ from LHC Run2 data:-

▶ From ATLAS and LHC data, correlation between $g_{Z'}$ and $M_{Z'}$ can be drawn, getting rid of one parameter of the model.

Figure: Z' decay cross section vs. $m_{Z'}$ (at left), Upper bound on $g_{Z'}$ vs. $m_{Z'}$ (at right), Red, Black and Blue curve represents $x_H = -1$, $x_H = 0$, $x_H = 1$ respectively

 $\left\{ \begin{array}{ccc} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 \\ 0$

Constraint on DM mass:-

 \blacktriangleright With fixed x_H , m_ζ can be parametrized by $M_{Z'}$ only

Figure: Dark matter mass m_{ζ} as function of Z' mass $m_{Z'}$. Green, red and black dashed curves [re](#page-11-0)pre[s](#page-8-0)[e](#page-11-0)nts $x_H = 1$ $x_H = 1$ $x_H = 1$ $x_H = 1$ $x_H = 1$, $x_H = 0$, $x_H = -1$ res[p](#page-9-0)e[c](#page-12-0)[ti](#page-8-0)[v](#page-9-0)[el](#page-11-0)[y](#page-12-0)

Constraint on DM mass:-

- As we are considering $m_{\zeta} > m_{Z'}$, for $g_{Z'} = g_{\zeta}$, $x_H = 1$ excludes the Z' mass range below 4.5TeV, though for $x_H = -1$, $m_{Z'} > 3.5 \text{TeV}$ is allowed.
- ▶ For higher g_C values; lower end x_H accommodate larger mass parameter range for Z'.
- \blacktriangleright For fixed x_H value, the allowed dark matter mass range shifts toward higher end of mass, considering $\sigma_{\textit{SI}} \propto \textit{g}_{\zeta}^{\textit{2}}$.

KORKAR KERKER SAGA

Spin Independent Cross Section bound from M_{Z} :-

Figure: Spin-Independent cross section σ_{SI} as function of Z' mass $m_{Z'}$, green, black, purple dashed curves represents LZ data fitted cross-section $\sigma_{LZ_{f} itted}$ $\sigma_{LZ_{f} itted}$ $\sigma_{LZ_{f} itted}$ for $m_{\zeta}=10\text{TeV}$, $m_{\zeta}=100\text{TeV}$ $m_{\zeta}=100\text{TeV}$ $m_{\zeta}=100\text{TeV}$, $m_{\zeta}=1000\text{TeV}$ re[s](#page-11-0)[p](#page-12-0)e[ct](#page-14-0)[iv](#page-11-0)e[l](#page-13-0)[y](#page-14-0)

Spin Independent Cross Section bound from M_{Z} :-

- ▶ Spin-independent cross-section derived can be expressed with one free parameter $m_{Z'}$ only by fixing $g_{\zeta} = g_{Z'}$.
- \triangleright As the LZ data gives the upper bound for the cross-section, areas above the the point horizontal dotted $\sigma_{LZ\,fitted}$ line cutting σ_{SI} , are excluded. For $x_H = 0$, and $m_{\zeta} = 10 \text{TeV}$, the upper bound of $m_{Z'}$ would be around 4TeV, so for $m_{\zeta} = 100$ TeV would be 5TeV.
- ▶ For fixed m_C , we get higher bound of allowed $m_{Z′}$ as x_H goes from -1 to 1 .

Finding Reheating Temperature:-

- \blacktriangleright m_{ζ} > Reheating temperature T_{RH} , keeps ζ throughout off equilibrium in plasma.
- ▶ Dark matter abundance constraint condition $\Omega_{\zeta} h^2 = 0.12$ meets only if $x_{R\mu} = 10$

Summary:-

- ▶ We have considered incompletely thermalized WIMP dark matter production from SM particles using inhomogeneous temperature distribution in thermal plasma.
- ▶ Using the LHC and LZ' data, the lower bound of dark matter mass found is 10TeV, while the same for $m_{Z'}$ is around 2.5TeV.
- ▶ The relic density constraint can be addressed using reheating temperature $T_{R_H} = m_c/10$.

4 0 > 4 4 + 4 = + 4 = + = + + 0 4 0 +