Search for VH,H→cc (In the Resolved-Jet Regime at CMS)

DPF-PHENO Parallel Talk 14 May 2024

T. Russell¹ on behalf of the CMS Collaboration 1. Brown University

$VH(H \rightarrow cc)$ Run 3 Analysis **Motivation**

- Higgs boson couplings to vector bosons and 3rd generation charged fermions have been established
- Yet to establish coupling with second generation quarks •
 - $H \rightarrow cc$ branching ratio is 20x smaller than $H \rightarrow bb$ •
 - Tagging charm jets is difficult
- Analysis with full Run 2 data
 - Vector boson (Z/W) decaying leptonically: 3 leptonic channels \bullet

Run 2 Results	Expected	(
σ(VH) x B(H→cc)	< 7.6 x SM	<
$ \kappa_{c} $	< 3.4	

$VH(H \rightarrow cc) Run 2 Analysis$ Review

- **Resolved-Jet Regime**
 - Targets low and moderate ranges of the Higgs pT
 - 2 small-radius (AK4) Jets •
 - Covers ~95% of the signal phase space \bullet
 - Fit signal vs background BDT
- Merged-Jet Regime
 - Targets moderate and high ranges of the Higgs p⊤
 - large-radius (AK15) Jet
 - Fit regressed Higgs mass
 - Contributes comparatively more to sensitivity
 - Exploits correlations between charm jets •
 - Benefits from lower backgrounds ۲

VH(H\rightarrowcc) Analysis Run 3 Goals

- Improve the limits in the resolved-jet regime set in the Run 2 Analysis
- Move toward an integrated strategy between merged and resolved regimes

Jet Reconstruction Strategy

- Particle Angular-separation Independent Resonant Dijet (PAIReD) [arXiv: 2311.11011]
 - New approach to reconstruct decays of heavy particles at a large range of Lorentz-boosts
- Instead of tagging AK4 jets individually, define an elliptical area in the η - ϕ plane based on a pair of AK4 jets
 - Run any tagging algorithm on the jet
 - Allows the tagger to leverage correlations between hadronization products

Advantages

- Better signal reconstruction
 - Higher signal reconstruction efficiency at all Lorentz • boosts
 - 40-50% improvement at lower boosts •
- Better tagging
 - Better flavor separation at low boosts \bullet
- Combined effect results in 2-4x rejection of V+jets background

New VH(H→cc) Analysis Strategy

Description	Run 2 Resolved	Run 2 Merged	Run 3 (Resolved)
Higgs Reconstruction	2 AK4 Jets	1 AK15 Jet	1 PAIReD Jet
Tagging	Individual DeepJet Scores	ParticleNet	Particle Transformer on PAIReD
Signal Region Definition	Cut on Leading Jet Score	Cut on AK15 Jet Score + Signal vs Background Kinematic BDT	Cut on PAIReD Jet Score + Signal vs Background Kinematic BDT/NN
Fit Variable	Signal vs Background BDT	Regressed AK15 Jet Mass	Regressed PAIReD Jet Mass

Implementation of Reconstruction Strategy in VH($H \rightarrow cc$) Run 3

- Tagging with large-radius jets (e.g. AK15) lets one exploit correlations between decay products (as done in VHcc Run-2 merged-jet analysis)
 - Limited to high boosts only
- New strategy lets us extend this benefit to resolved-jet regime
- Retrained with CMS samples
- Added secondary vertex information to PAIReD Jets
 - Particle Transformer implementation
- Can also regress the Higgs mass and kinematics from the constituents
- Improved tagging efficiency and more synergy with the strategy in the merged-jet regime

Implementation of Reconstruction Strategy in VH($H \rightarrow cc$) Run 3

- Retrained tagger with CMS samples (PFNano/BTVNano)
 - Added secondary vertex information to PAIReD Jets
 - Particle Transformer implementation
- Can also regress the Higgs mass and kinematics from the constituents
- Improved tagging efficiency and more synergy with the strategy in the merged-jet regime

$VH(H \rightarrow cc)$ Run 3 Analysis **Calibration Plans**

- PAIReD Jet energy corrections to be derived
- Will use boosted tagger calibration methods (sfBDT) to calibrate tagger
 - Use BDT to identify QCD jets similar to signal and derive scale factors with those

$VH(H \rightarrow cc)$ Run 3 Analysis Summary

- - Applicable at all boosts •
 - Main gain from lower boosts
 - Provides synergy with the merged-jet strategy ullet
 - Wider acceptance coverage •
 - Split between strategies can be tuned to maximize significance \bullet

New strategy allows taggers to take advantage of more information and achieve better efficiency