Addressing the Axion Quality Problem

K.S. Babu

Oklahoma State University

DPF-Pheno 2024 University of Pittsburgh/Carnegie Mellon University May 13-17, 2024

Credits

Talk based on work done in collaboration with: Bhaskar Dutta and Rabi Mohapatra (to appear)

Supported by the US Department of Energy

Axion Solution to Strong CP Problem

• Strong interactions allow a CP violating term in the Lagrangian,

$$\mathcal{L} = \left(rac{g_s^2}{32\pi^2}
ight)\overline{ heta}G_{\mu
u} ilde{G}^{\mu
u}$$

- In its presence, neutron acquires a nonzero electric dipole moment, *d_n* ≃ *θ* × (10⁻¹⁶) e-cm. Current limit on *d_n*, |*d_n*| ≤ 1.1 × 10⁻²⁶ e-cm, sets a limit *θ* < 10⁻¹⁰.
- A lack of understanding of the extreme smallness of $\overline{\theta}$ within the Standard Model is the strong CP problem
- In presence of a light pseudoscalar particle, the axion (a), this problem can be solved by the Peceei-Quinn (PQ) mechanism
- The PQ mechanism assumes a global U(1) symmetry that has a QCD anomaly. This U(1) is spontaneously broken by a Higgs scalar, and also explicitly by the QCD anomaly term

Axion and the PQ Mechanism

• The Lagrangian for a PQ symmetric theory contains the terms

$$\mathcal{L} = \left(\frac{g_s^2}{32\pi^2}\right) \frac{a}{f_a} G_{\mu\nu} \tilde{G}^{\mu\nu} - \lambda (|\Phi|^2 - f_a^2)^2 - \Lambda^4 \cos\left(\frac{Na}{f_a}\right),$$

- Note that θ
 has been absorbed into the dynamical axion field a which is the phase of Φ: Φ = (p+f_a)/2 e^{i d/f_a}
- Here ∧ is the QCD scale, N is an integer ≥ 1 related to the QCD anomaly coefficient, and f_a is the axion decay constant.
- Minimizing the potentail leads to *a* = 0, which thus solves the strong CP problem
- Quantum gravity is expected to break all global symmetries, including $U(1)_{PQ}$. This gives rise to the axion quality problem
- For example, a gravity-induced term in the Higgs potential,

$$V_{gravity} = rac{\kappa}{M_{
m Pl}} |\Phi|^4 (e^{i\delta} \Phi + h.c.)$$

would shift the vacuum value a = 0 to unacceptably large values

Axion Quality Problem

• Minimizing the potential in presence of the quantum gravity correction one has

$$\overline{\theta} \simeq \frac{\kappa \sin \delta}{2\sqrt{2}} \frac{f_a^5}{\Lambda^4 M_{\rm Pl} N^2}$$

• For currently favored values of $f_a = (10^9 - 10^{12})$ GeV, with $\Lambda \simeq 200$ MeV and $M_{\rm Pl} = 1.22 \times 10^{19}$ GeV, one finds the limits

$$\kappa \sin \delta \le \{10^{-38} - 10^{-53}\}$$

- This is rather severe, much worse than the strong CP problem itself! Holman et. al. (1992); Kamionkowski, March-Russell (1992); Barr, Seckel (1992); Ghigna, Lusignoli, Roncadelli (1992)
- Attempts to solve the axion quality problem have used gauge symmetries with an accidental global U(1), composite axion, and discrete gauge symmetries
- Realizing accidental PQ symmetry from a gauge symmetry is nontrivial, since PQ symmetry should have a QCD anomaly, but the original gauge symmetry has no anomaly
- In the rest of the talk I shall present our attempts to construct such models and discuss briefly phenomenology of successful models

Accidental PQ From Gauged U(1)

• Standard Model is extended with a gauged $U(1)_a$. All SM particles are neutral under this $U(1)_a$. Vectorlike fermions are added which carry $U(1)_a$ charges:

Field	$SU(3).SU(2)_L.U(1)_Y$	$U(1)_a$
Fermions		
(Q_{1L}, Q_{2L}, Q_{3L})	(3, 1, y)	(1, 1, -2)
(Q_{1R}, Q_{2R}, Q_{3R})	(3, 1, y)	-(1, 1, -2)
(N_{1R}, N_{2R}, N_{3R})	(1, 1, 0)	(1, 3, -4)
Scalars		
(S, T)	(1, 1, 0)	$(\frac{2}{n}, 4)$

- All anomalies cancel, including $[U(1)_a]^3$ via the singlet fermions
- n is an integer with $n \ge 5$
- Yukawa interactions of S and T generate vectorlike quark masses: $-\mathcal{L}_{\text{Yuk}} = Y_3 \overline{Q}_{3L} Q_{3R} T^* + Y_{1,2} \overline{Q}_{1,2,L} Q_{1,2,R} \frac{S^n}{(M_*)^{(n-1)}} + h.c.$
- Model has two global U(1)s, one acting on (Q₃, T) and another acting on (Q_{1,2}, S). Each has a QCD anomaly
- Thus there are two Goldstone bosons, one eaten up by the U(1)_a gauge boson, with the other identified as the axion

High Quality Axion

• Axion is orthogonal to Goldstone:

$$G = \frac{\left(\frac{2}{n}f_{S}\eta_{S} + 4f_{T}\eta_{T}\right)}{\sqrt{(4f_{T})^{2} + \left(\frac{2}{n}f_{S}\right)^{2}}}, \quad a = \frac{\left(4f_{T}\eta_{S} - \frac{2}{n}f_{S}\eta_{T}\right)}{\sqrt{(4f_{T})^{2} + \left(\frac{2}{n}f_{S}\right)^{2}}}$$

Here $S = \frac{(\rho_S + f_S)}{\sqrt{2}} e^{\eta_S/f_S}$ and $T = \frac{(\rho_T + f_T)}{\sqrt{2}} e^{i\eta_T/f_T}$ are used

• Axion decay constant f_a can be worked out to be

$$f_a = \frac{f_T f_S}{\sqrt{4f_T^2 n^2 + f_S^2}}$$

- This is a KSVZ type axion model, but with high quality axion
- The leading quantum gravity correction that can destabilize the axion potential is

$$V_{
m gravity} = rac{\kappa e^{i\delta}S^{2n}T^*}{M_{
m Pl}^{2n-3}} + h.c.$$

• The induced $\overline{\theta}$ is

$$\overline{\theta} \simeq \frac{\kappa \sin \delta}{(\sqrt{2})^{(2n-1)}} \frac{f_5^{2n} f_T}{\Lambda^4 M_{\rm Pl}^{2n-3}}$$

• For $f_S = f_T = f_a \sqrt{1 + 4n^2}$, and with n = 5, $f_a = 10^{10}$ GeV, one has $\overline{\theta} \sim 7 \times 10^{-12}$. If $f_a = 10^{12}$ GeV is used, n = 7 gives $\overline{\theta} \sim 10^{-12}$, showing the high quality, all for $\kappa \sin \delta = 1$

Generalization to a Family of Models

• A family of models can be found as extensions of the model. *m*+1 vectorlike quarks are used:

Field	$SU(3).SU(2)_L.U(1)_Y$	U(1)a
Fermions		
$(Q_{1L}, Q_{2L},, Q_{m+1,L})$	(3, 1, y)	(1, 1,, 1, -m)
$(Q_{1R}, Q_{2R},, Q_{m+1,R})$	(3, 1, y)	-(1, 1,1, -m)
(N_{1R}, N_{2R}, N_{3R})	(1, 1, 0)	(m-1, m+1, -2m)
Scalars		
(S, T)	(1, 1, 0)	$(\frac{2}{n}, 2m)$

- All anomalies cancel, with the previous model being m = 2 case
- Axion field is given as

$$a = \frac{\left(2mf_T\eta_S - \frac{2}{n}f_S\eta_T\right)}{\sqrt{(2mf_T)^2 + \left(\frac{2}{n}f_S\right)^2}}, \quad f_a = \frac{f_Tf_S}{\sqrt{f_T^2m^2n^2 + f_S^2}}$$

- This leads to a high quality KSVZ type axion. For m ≥ 9, n = 1 can be chosen, whence all quarks acquire mass at renormalizable level
- Couplings of axion to nucleon and electron are same as KSVZ
- Domain wall number $N_{DW} = 1$, which is harmless in cosmology Sikivie (1982)

$$\mathsf{N}_{\mathrm{DW}} = \mathrm{minimum\ integer}\left\{rac{1}{f_a}\sum_i n_i\ c_i\ v_i\ , \quad n_i\in\mathcal{Z}
ight\},\ a=\sum_i c_ia_i$$

Ernst, Ringwald, Tamarit (2018)

SO(10) Model with Gauged U(1) and Axion

- Unified SO(10) imes U(1) can lead to high quality axion
- The attractive features of *SO*(10) GUT are preserved, including coupling unification and predictive fermion spectrum
- The fermion content and transformation under $SO(10) \times U(1)$:

 $\{3\times 16_1+1\times 10_{-6}+1\times 1_{12}\}+\{2\times 1_{-4}+1\times 1_8\}$

- All gauge anomalies cancel. Some resemblance to E_6 charges
- Higgs sector contains the usual SO(10) fields and two singlets:

 $\{10_{H}(-2) + \overline{126}_{H}(-2) + 45_{H}(0) \text{ or } 54_{H}(0) + T(1_{+1}) + S(1_{12})\}$

• Yukawa couplings:

$$\begin{aligned} \mathcal{L}_{\rm Yuk} &= & Y_{10} 16 \, 16 \, 10_H + Y_{126} 16 \, 16 \, \overline{126}_H + y_{10} 10_{-6} 10_{-6} S_{12} \\ &+ & y_{10}' 10_{-6} 1_8 \, 10_H + 1_{12} 1_{12} \frac{(S^*)^2}{M_{\rm Pl}} + \dots h.c. \end{aligned}$$

• Realistic fermion masses are induced, including exotics

High Quality SO(10) Axion

- Model has two decoupled sectors, one with 16-fermions, and one with 10-fermion. This results in accidental PQ symmetry
- Leading correction to PQ symmetry from gravity is

$$V \supset \frac{T^{12}S^*}{M_{\rm Pl}^9}$$

- Resulting shift in $\overline{\theta}$ is highly suppressed. $f_a < 2 \times 10^{11}$ GeV is required for quality. Domain wall number $N_{DW} = 1$ in the model
- Axion field is orthogonal to pseudoscalars and Goldstones $a \simeq 1/\sqrt{1 + \frac{144v_{z}^{2}v^{2}}{X}} (\eta_{s} - 12v_{T}v_{s}v^{2}\eta_{T}/X) + ..., \quad f_{a} = v_{s}/\sqrt{1 + \frac{144v_{z}^{2}v^{2}}{X}}, \quad X = v_{T}^{2}v^{2} + 4\tilde{v}^{2}(v_{s}^{02} + v_{s}^{02}) + 16v_{s}^{02}v_{s}^{02}}$
- Axion coupling to fermions are modified compared to DFSZ or KSVZ models:

$$\mathcal{L}(f,a) = i \frac{m_u}{f_a} \left[\frac{24v_S^2(2v_d^{02} + \bar{v}^2)}{X + 144v_S^2 v^2} \right] \bar{u}\gamma_5 ua + i \frac{m_d}{f_a} \left[\frac{24v_S^2(2v_u^{02} + \bar{v}^2)}{X + 144v_S^2 v^2} \right] \bar{d}\gamma_5 da + i \frac{m_e}{f_a} \left[\frac{24v_S^2(2v_u^{02} + \bar{v}^2)}{X + 144v_S^2 v^2} \right] \bar{e}\gamma_5 ea$$

An upper limit on f_a in SO(10) model

• The induced $\overline{\theta}$ from quantum gravity is

$$\overline{ heta}\simeq rac{\kappa\sin\delta}{2^{(11/2)}}\sqrt{1+rac{144v_{S}^{2}}{v_{T}^{2}}}rac{v_{T}^{12}f_{a}}{\Lambda^{4}M_{
m Pl}^{9}}$$

• This sets a limit $f_a < 2 \times 10^{11} \text{ GeV}$

Axion couplings to electron in SO(10) model

Ratio of electron coupling of axion versus gluon coupling:

Axion couplings to proton and neutron in SO(10)

Conclusions

- Two classes of models presented which have an accidental PQ symmetry
- In one class, SM $\times U(1)$ resulted in high quality axion which is similar to KSVZ model
- *N*_{DW} = 1 in these models for domain wall number, causing no cosmological issues
- A second class in within the framework of *SO*(10) unification. It leads to a hybrid KSVZ-DFSZ axion with high quality
- $N_{DW} = 1$ in these models without cosmological problems
- Axion couplings to fermions can potentially distinguish these models from standard benchmarks
- In all cases there is room for the axion to be the entire dark matter content of the universe