Multi-vertex Jet Trigger at ATLAS' upgrade for HL-LHC Level 0

Santiago Cané* (Pitt) - Tae Min Hong - Tomás Bazzano - Ricardo Piegaia Gustavo Otero y Garzón - Rainer Bartoldus - Ariel Schwartzman

DPF-PHENO

May 13th, 2024

https://indico.cern.ch/event/1358339/

Outline

Introduction

• High Luminosity LHC

Physics motivation

- Hard-QCD jets at HL-LHC Run 4
- Single- vs multi-vertex events

Trigger strategy

• Boosted Decision Trees to classify single vs. multi-vertex

FPGA implementation

• Preliminary High Level Synthesis results

	LHC Run 3	HL-LHC Run 4
Luminosity	2 ·10 ³⁴ cm ⁻² s ⁻¹	7.5 · 10 ³⁴ cm ⁻² s ⁻¹
Pile Up	~60 collisions/bunch crossing	~200 collisions/bc
	Π	

• Hardware-based Level 0 Trigger

Filters data from 40MHz to 1 MHz with a latency of 10 μs

• Software-based Event Filter

- Current pile up suppression algorithms target stochastic and soft-QCD jets.
- Run 4: new relevant PU source → hard-QCD PU
- Hard-QCD PU \Rightarrow multiple hard scatters
- Goal: develop a new trigger for L0 that targets hard-QCD PU
- <u>Motivation</u>: $HH \rightarrow 4b$ and any process with a 4-jet final state.

Santiago Cané

Single vs. multi-vertex

Signal: 4 jets from a single vertex

Background: 4 jets from multiple vertices

5

Single vs. multi-vertex

-2

0

2

4

-4

Signal: 4 jets from a single vertex

-100

-50

6

100

50

0

Event composition (4+ jets)

Santiago Cané

Why ML?

- Current methods allow abundant hard QCD PU contamination
- Level 0: no track or vertex information
- Topological variables suggest ML can do the classification

Why BDTs?

- Low latency and good performance
- Efficient infrastructure for FPGA implementation using TMVA, fwXmachina (fwx.pitt.edu) and Vivado

BDT inputs

BDT performance

BDT output score

BDT performance (2)

- Santiago Cané
- With fwX and VitisHLS, different BDT configurations were synthesized
- Targeted FPGA: Virtex Ultrascale+ VCU118

1 clock tick = 3.125ns

Nvariables	Ntrees	Flip Flops	Look Up Tables	Latency (cycles)	II (cycles)
8	120	4136	56339	6	1
8	200	8540	96489	6	1
12	120	8543	65702	7	1
12	200	17207	112152	7	1
24	10	219	2757	4	1
24	60	2371	30097	7	1
24	200	11692	103113	7	1
		<1% of board	<10% of board	d < 22ns	

- Special treatment at L0 of this new "Hard-QCD PU" is needed
- Preliminary results: BDT has better performance than asymmetric triggers
- FPGA implementation is feasible → <u>very low latency and</u> <u>resource usage</u>
- <u>Next steps</u>: Study the effect of multiple high energy vertices on Run 3 data (of high <µ>=50/60).

Thank you!

Single vertex event

- Single vertex events are our signal.
- Interesting for HH→4b analysis or other physics with 4 jets in the final state

• This event will pass a Level 0 trigger of 4 jets with P_T >25GeV

• It is a dijet QCD event \Rightarrow we want to eliminate it.

 Same calorimeter signature as single-vertex. It will <u>also</u> pass a Level 0 trigger of 4 jets with P_T>25GeV.
⇒ new trigger is needed.

BDT inputs (2): Δφ

BDT performance (3)

- Red curves: Training with QCD, testing with HH4b
- Orange curves: Training and testing with QCD Dijet samples.

FPGA implementation (2)

- With fwX and VitisHLS, different BDT configurations were synthesized.
- Targeted FPGA: Virtex Ultrascale+ family (VCU118)

FPGA	Nvariables	Ntrees	Flip Flops	Look Up Tables	Latency(cycles)	II (cycles)
VCU118	8	200	8540	96489	6	1
	12	120	8543	65702	7	1
	24	60	2371	30097	7	1
	24	200	11692	103113	7	1
Artix7	8	200	87235	123142	24	1
	12	120	73676	90327	26	1
	24	60	34911	43097	24	1